001     909710
005     20240625095125.0
024 7 _ |a 10.1007/s00894-022-05231-7
|2 doi
024 7 _ |a 0948-5023
|2 ISSN
024 7 _ |a 1610-2940
|2 ISSN
024 7 _ |a 2128/31870
|2 Handle
024 7 _ |a 36074206
|2 pmid
024 7 _ |a WOS:000852403700002
|2 WOS
037 _ _ |a FZJ-2022-03358
082 _ _ |a 540
100 1 _ |a Lai, Hien T. T.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A comparative study of receptor interactions between SARS-CoV and SARS-CoV-2 from molecular modeling
260 _ _ |a Heidelberg
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1663677973_5639
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The pandemic of COVID-19 severe acute respiratory syndrome, which was fatal for millions of people worldwide, triggeredthe race to understand in detail the molecular mechanisms of this disease. In this work, the differences of interactions betweenthe SARS-CoV/SARS-CoV-2 Receptor binding domain (RBD) and the human Angiotensin Converting Enzyme 2 (ACE2)receptor were studied using in silico tools. Our results show that SARS-CoV-2 RBD is more stable and forms more interactionswith ACE2 than SARS-CoV. At its interface, three stable binding patterns are observed and named red-K31, green-K353 and blue-M82 according to the central ACE2 binding residue. In SARS-CoV instead, only the first two binding patchesare persistently formed during the MD simulation. Our MM/GBSA calculations indicate the binding free energy differenceof about 2.5 kcal/mol between SARS-CoV-2 and SARS-CoV which is compatible with the experiments. The binding freeenergy decomposition points out that SARS-CoV-2 RBD–ACE2 interactions of the red-K31 ( −23.5 ± 0.2 kcal∕mol ) andblue-M82 ( −9.1 ± 0.1 kcal∕mol ) patterns contribute more to the binding affinity than in SARS-CoV ( −1.8 ± 0.02 kcal∕molfor red-K31), while the contribution of the green-K353 pattern is very similar in the two strains ( −17.8 ± 0.2 kcal∕moland −22.7 ± 0.1 kcal∕mol for SARS-CoV-2 and SARS-CoV, respectively). Five groups of mutations draw our attentionat the RBD–ACE2 binding interface, among them, the mutation –PPA469-471/GVEG482-485 has the most important andfavorable impact on SARS-CoV-2 binding to the ACE2 receptor. These results, highlighting the molecular differences in thebinding between the two viruses, contribute to the common knowledge about the new corona virus and to the developmentof appropriate antiviral treatments, addressing the necessity of ongoing pandemics.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Nguyen, Ly H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Phan, Anh D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kranjc Pietrucci, Agata
|0 P:(DE-Juel1)179141
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Nguyen, Toan T.
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Nguyen-Manh, Duc
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1007/s00894-022-05231-7
|g Vol. 28, no. 10, p. 305
|0 PERI:(DE-600)1284729-X
|n 10
|p 305
|t Journal of molecular modeling
|v 28
|y 2022
|x 0948-5023
856 4 _ |u https://juser.fz-juelich.de/record/909710/files/Lai_J.Mol.Mod_2022.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909710
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179141
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL MODEL : 2021
|d 2022-11-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-16
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21