000909714 001__ 909714
000909714 005__ 20240625095036.0
000909714 020__ $$a978-3-95806-619-9
000909714 0247_ $$2Handle$$a2128/31880
000909714 037__ $$aFZJ-2022-03362
000909714 041__ $$aEnglish
000909714 1001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b0$$ufzj
000909714 1112_ $$aAutumn School on Correlated Electrons$$cJülich$$d2022-10-04 - 2022-10-07$$gcorrel22$$wGermany
000909714 245__ $$aDynamical Mean-Field Theory of Correlated Electrons
000909714 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2022
000909714 3367_ $$2DRIVER$$aconferenceObject
000909714 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000909714 3367_ $$0PUB:(DE-HGF)26$$2PUB:(DE-HGF)$$aProceedings$$bproc$$mproc$$s1663843969_23674
000909714 3367_ $$2DataCite$$aOutput Types/Book
000909714 3367_ $$2ORCID$$aBOOK
000909714 3367_ $$03$$2EndNote$$aConference Proceedings
000909714 3367_ $$2BibTeX$$aPROCEEDINGS
000909714 4900_ $$aModeling and Simulation$$v12
000909714 520__ $$a1. Dieter Vollhardt: Why Calculate in Infinite Dimensions? 2. Giovanni Vignale: Fermi Liquids, 3. Jan von Delft: The Physics of Quantum Impurity Models, 4. Cedric Weber: Machine Learning as a Solver for DMFT, 5. Philipp Werner: Quantum Monte Carlo Impurity Solvers, 6. Erik Koch: Analytic Continuation of Quantum Monte Carlo Data, 7. Alexander Lichtenstein: LDA+DMFT for Strongly Correlated Materials, 8. Eva Pavarini: DMFT for Linear Response Functions, 9.Frank Lechermann: DFT+DMFT for Oxide Heterostructures, 10. Michael Potthoff: Dynamical Mean-Field Theory for Correlated Topological Phases, 11. Karsten Held: Beyond DMFT: Spin Fluctuations, Pseudogaps and Superconductivity, 12. Ferdi Aryasetiawan: The GW+EDMFT Method, 13. Martin Eckstein: DMFT and GW+DMFT for Systems out of Equilibrium
000909714 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000909714 536__ $$0G:(DE-HGF)POF4-5215$$a5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)$$cPOF4-521$$fPOF IV$$x1
000909714 7001_ $$0P:(DE-Juel1)130763$$aKoch, Erik$$b1$$eCorresponding author$$ufzj
000909714 7001_ $$0P:(DE-HGF)0$$aLichtenstein, Alexander$$b2
000909714 7001_ $$0P:(DE-HGF)0$$aVollhardt, Dieter$$b3
000909714 8564_ $$uwww.cond-mat.de/events/correl22
000909714 8564_ $$uhttps://juser.fz-juelich.de/record/909714/files/correl22.pdf$$yOpenAccess
000909714 909CO $$ooai:juser.fz-juelich.de:909714$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b0$$kFZJ
000909714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130763$$aForschungszentrum Jülich$$b1$$kFZJ
000909714 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000909714 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5215$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x1
000909714 9141_ $$y2022
000909714 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909714 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909714 920__ $$lyes
000909714 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000909714 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000909714 9801_ $$aFullTexts
000909714 980__ $$aproc
000909714 980__ $$aVDB
000909714 980__ $$aUNRESTRICTED
000909714 980__ $$abook
000909714 980__ $$aI:(DE-Juel1)IAS-3-20090406
000909714 980__ $$aI:(DE-Juel1)JSC-20090406
000909714 981__ $$aI:(DE-Juel1)PGI-2-20110106