001     909714
005     20240625095036.0
020 _ _ |a 978-3-95806-619-9
024 7 _ |a 2128/31880
|2 Handle
037 _ _ |a FZJ-2022-03362
041 _ _ |a English
100 1 _ |a Pavarini, Eva
|0 P:(DE-Juel1)130881
|b 0
|u fzj
111 2 _ |a Autumn School on Correlated Electrons
|g correl22
|c Jülich
|d 2022-10-04 - 2022-10-07
|w Germany
245 _ _ |a Dynamical Mean-Field Theory of Correlated Electrons
260 _ _ |a Jülich
|c 2022
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a Proceedings
|b proc
|m proc
|0 PUB:(DE-HGF)26
|s 1663843969_23674
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Book
|2 DataCite
336 7 _ |a BOOK
|2 ORCID
336 7 _ |a Conference Proceedings
|0 3
|2 EndNote
336 7 _ |a PROCEEDINGS
|2 BibTeX
490 0 _ |a Modeling and Simulation
|v 12
520 _ _ |a 1. Dieter Vollhardt: Why Calculate in Infinite Dimensions? 2. Giovanni Vignale: Fermi Liquids, 3. Jan von Delft: The Physics of Quantum Impurity Models, 4. Cedric Weber: Machine Learning as a Solver for DMFT, 5. Philipp Werner: Quantum Monte Carlo Impurity Solvers, 6. Erik Koch: Analytic Continuation of Quantum Monte Carlo Data, 7. Alexander Lichtenstein: LDA+DMFT for Strongly Correlated Materials, 8. Eva Pavarini: DMFT for Linear Response Functions, 9.Frank Lechermann: DFT+DMFT for Oxide Heterostructures, 10. Michael Potthoff: Dynamical Mean-Field Theory for Correlated Topological Phases, 11. Karsten Held: Beyond DMFT: Spin Fluctuations, Pseudogaps and Superconductivity, 12. Ferdi Aryasetiawan: The GW+EDMFT Method, 13. Martin Eckstein: DMFT and GW+DMFT for Systems out of Equilibrium
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)
|0 G:(DE-HGF)POF4-5215
|c POF4-521
|f POF IV
|x 1
700 1 _ |a Koch, Erik
|0 P:(DE-Juel1)130763
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Lichtenstein, Alexander
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vollhardt, Dieter
|0 P:(DE-HGF)0
|b 3
856 4 _ |u www.cond-mat.de/events/correl22
856 4 _ |u https://juser.fz-juelich.de/record/909714/files/correl22.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909714
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130881
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130763
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5215
|x 1
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a proc
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21