001     909743
005     20230502100729.0
020 _ _ |a 978-1-6654-2792-0
024 7 _ |2 Handle
|a 2128/31857
024 7 _ |2 doi
|a 10.1109/IGARSS46834.2022.9884699
024 7 _ |a WOS:000920916605035
|2 WOS
037 _ _ |a FZJ-2022-03382
100 1 _ |0 P:(DE-Juel1)187558
|a Sharma, Surbhi
|b 0
|u fzj
111 2 _ |a IEEE International Geoscience and Remote Sensing Symposium
|c Kuala Lumpur
|d 2022-07-17 - 2022-07-22
|g IGARSS 2022
|w Malaysia
245 _ _ |a Improving Generalization for Few-Shot Remote Sensing Classification with Meta-Learning
260 _ _ |c 2022
300 _ _ |a 5061-5064
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1672931482_21277
336 7 _ |0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|a Contribution to a book
|m contb
520 _ _ |a In Remote Sensing (RS) classification, generalization ability is one of the measure that characterizes the success of Machine Learning (ML) models, but is often impeded by the scarce availability of annotated training data. Annotated RS samples are expensive to obtain and can present large disparities when produced by different annotators. In this paper, we utilize Few-Shot Learning (FSL) with meta-learning to ad-dress the challenge of generalization using limited amount of training information. The data used in this paper is lever-aged from different datasets that have diverse distributions, that means distinct feature spaces. We tested our approach on publicly available RS benchmark datasets to perform few-shot RS image classification using meta-learning. The results of the experiments suggest that our approach is able to generalize well on the unseen data even with limited number of training samples and reasonable training time.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(EU-Grant)956748
|a ADMIRE - Adaptive multi-tier intelligent data manager for Exascale (956748)
|c 956748
|f H2020-JTI-EuroHPC-2019-1
|x 1
700 1 _ |0 P:(DE-Juel1)186079
|a Roscher, Ribana
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)132239
|a Riedel, Morris
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)132190
|a Memon, Mohammad Shahbaz
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)171343
|a Cavallaro, Gabriele
|b 4
|u fzj
773 _ _ |a 10.1109/IGARSS46834.2022.9884699
856 4 _ |u https://juser.fz-juelich.de/record/909743/files/IGARSS2022_Surbhi_Sharma.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909743
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)187558
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)186079
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132239
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132190
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171343
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2022
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21