Hauptseite > Publikationsdatenbank > Improving Generalization for Few-Shot Remote Sensing Classification with Meta-Learning > print |
001 | 909743 | ||
005 | 20230502100729.0 | ||
020 | _ | _ | |a 978-1-6654-2792-0 |
024 | 7 | _ | |2 Handle |a 2128/31857 |
024 | 7 | _ | |2 doi |a 10.1109/IGARSS46834.2022.9884699 |
024 | 7 | _ | |a WOS:000920916605035 |2 WOS |
037 | _ | _ | |a FZJ-2022-03382 |
100 | 1 | _ | |0 P:(DE-Juel1)187558 |a Sharma, Surbhi |b 0 |u fzj |
111 | 2 | _ | |a IEEE International Geoscience and Remote Sensing Symposium |c Kuala Lumpur |d 2022-07-17 - 2022-07-22 |g IGARSS 2022 |w Malaysia |
245 | _ | _ | |a Improving Generalization for Few-Shot Remote Sensing Classification with Meta-Learning |
260 | _ | _ | |c 2022 |
300 | _ | _ | |a 5061-5064 |
336 | 7 | _ | |2 ORCID |a CONFERENCE_PAPER |
336 | 7 | _ | |0 33 |2 EndNote |a Conference Paper |
336 | 7 | _ | |2 BibTeX |a INPROCEEDINGS |
336 | 7 | _ | |2 DRIVER |a conferenceObject |
336 | 7 | _ | |2 DataCite |a Output Types/Conference Paper |
336 | 7 | _ | |0 PUB:(DE-HGF)8 |2 PUB:(DE-HGF) |a Contribution to a conference proceedings |b contrib |m contrib |s 1672931482_21277 |
336 | 7 | _ | |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |a Contribution to a book |m contb |
520 | _ | _ | |a In Remote Sensing (RS) classification, generalization ability is one of the measure that characterizes the success of Machine Learning (ML) models, but is often impeded by the scarce availability of annotated training data. Annotated RS samples are expensive to obtain and can present large disparities when produced by different annotators. In this paper, we utilize Few-Shot Learning (FSL) with meta-learning to ad-dress the challenge of generalization using limited amount of training information. The data used in this paper is lever-aged from different datasets that have diverse distributions, that means distinct feature spaces. We tested our approach on publicly available RS benchmark datasets to perform few-shot RS image classification using meta-learning. The results of the experiments suggest that our approach is able to generalize well on the unseen data even with limited number of training samples and reasonable training time. |
536 | _ | _ | |0 G:(DE-HGF)POF4-5111 |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |0 G:(EU-Grant)956748 |a ADMIRE - Adaptive multi-tier intelligent data manager for Exascale (956748) |c 956748 |f H2020-JTI-EuroHPC-2019-1 |x 1 |
700 | 1 | _ | |0 P:(DE-Juel1)186079 |a Roscher, Ribana |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)132239 |a Riedel, Morris |b 2 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)132190 |a Memon, Mohammad Shahbaz |b 3 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)171343 |a Cavallaro, Gabriele |b 4 |u fzj |
773 | _ | _ | |a 10.1109/IGARSS46834.2022.9884699 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/909743/files/IGARSS2022_Surbhi_Sharma.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:909743 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)187558 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)186079 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)132239 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)132190 |a Forschungszentrum Jülich |b 3 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)171343 |a Forschungszentrum Jülich |b 4 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-511 |1 G:(DE-HGF)POF4-510 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5111 |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|