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3 School of Engineering and Natural Sciences, University of Iceland, Iceland
4 Frankfurt Institute for Advanced Studies, Goethe Universität Frankfurt, Germany

5 RWTH Aachen University, D52056 Aachen, Germany

ABSTRACT
The implementation of scalable processing workflows is

essential to improve the access to and analysis of the vast
amount of high-resolution and multi-source Remote Sens-
ing (RS) data and to provide decision-makers with timely
and valuable information. The Modular Supercomputing
Architecture (MSA) systems that are operated by the Jülich
Supercomputing Centre (JSC) are a concrete solution for
data-intensive RS applications that rely on big data storage
and processing capabilities. To meet the requirements of ap-
plications with more complex computational tasks, JSC plans
to connect the High Performance Computing (HPC) systems
of its MSA environment to different quantum computers
via the Jülich UNified Infrastructure for Quantum comput-
ing (JUNIQ). The paper describes this unique computing
environment and highlights its potential to address real RS
application scenarios through high-performance and hybrid
quantum-classical processing workflows.

Index Terms— Quantum computing, hybrid quantum-
classical computing, quantum annealing, modular supercom-
puting architecture, high performance computing, remote
sensing.

1. INTRODUCTION

There is an increasing number of applications that can benefit
and advance from the improved availability of data acquired
by heterogeneous RS sensors. Nonetheless, planetary-scale
applications, space-based observations and deep space mis-
sions are further increasing the complexity of RS data and its
processing [1], thus requiring high computational power and
data storage capabilities. Therefore, it is paramount to de-
velop processing workflows based on parallel algorithms that
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can scale on heterogeneous and HPC technologies. These
are requirements that make necessary the use of innovative
computational approaches, from HPC platforms such as clus-
ters or clouds to hardware accelerators such as Graphics Pro-
cessing Units (GPUs) or Field-Programmable Gate Arrays
(FPGAs) or novel Quantum Processing Units (QPUs) solu-
tions, among others.

In the context of Quantum Computing (QC), there is a
growing interest in using Quantum Machine Learning (QML)
to improve upon classical Machine Learning (ML) algorithms
[2]. QC was already leveraged to enhance Support Vector
Machines (SVMs) for handwriting recognition [3], to speed
up the prediction performance of fully connected Boltzmann
machines [4], to classify data obtained from biology exper-
iments [5], to enhance the compression and generation of
images with Quantum Variational AutoEncoders (QVAE) [6]
and to develop a quantum version of a Convolutional Neural
Network (CNN) for image recognition [7].

In the field of RS there are particular applications of QC
that were developed recently. For example in [8, 9, 10, 11,
12] QML algorithms such as the SVM and neural networks
were applied for classifying multispectral and hyperspectral
images. In [13], the authors proposed quantum-assisted ML
approaches to register MODIS images and in [14] a quantum-
based approach for compressive sensing was proposed. In
the context of Synthetic-Aperture Radar (SAR) processing, in
[15] an alternative QML classifier was presented and in [16] a
quantum approach for phase-unwrapping was implemented.

One disadvantage that is shared among all these methods
is that they are still limited to small-scale applications. The
main reason is that the current state of quantum processors
have limited qubit capacity. QC devices cannot, yet, process
large datasets and deliver the computational speedups asso-
ciated with fully fledged universal quantum computers (i.e.,
today’s devices are known as noisy intermediate-scale quan-
tum computers (NISQ)[17]). Nevertheless, existing quantum
algorithms are usually implemented within cloud computing



services that offer very limited storage and processing capa-
bilities (e.g., D-Wave Leap, IBM Quantum Experience, etc.).
These hybrid classical-quantum environments do not leverage
the HPC capabilities of conventional hardware accelerators
(e.g., GPUs) or state-of-the-art HPC systems.

The MSA systems of the JSC represent a concrete solu-
tion that can tackle the challenges posed by large-scale RS
applications. The MSA is a system that can fulfill the re-
quirements of both simulation and data analytics applications,
enabling additionally large dense memory extension modules
close to the processors, as well as novel QC technologies via
the JUNIQ1.

This paper offers insights into this unique computing en-
vironment, which is based on the synergy between MSA and
JUNIQ. While the classical HPC systems of the MSA can
satisfy the demands of data-intensive RS applications (e.g.,
based on Deep Learning (DL) algorithms), quantum comput-
ers can be used as accelerators for carrying out selected com-
puting tasks. The combination of MSA and JUNIQ provides
fertile ground for the development of high-performance and
hybrid quantum-classical processing workflows that can ex-
ploit the flexibility of the MSA system by selecting the right
mix of computing resources and assigning each processing
task to be run on an exactly matching computing platform.

2. MODULAR SUPERCOMPUTING
ARCHITECTURE

A MSA is a computing environment that integrates hetero-
geneous HPC systems, which can include different types of
accelerators (GPUs, FPGAs) and cutting-edge computing
technologies (e.g., quantum and neuromorphic computing)
and that is “modularized” by its software stack. The MSA
achieves global heterogeneity by interlinking the different
modules, allowing for a dynamic allocation of calculation re-
sources from different modules for a given program or work-
flow [18]. It was pioneered through the series of EU-funded
DEEP projects2 coordinated by the JSC. As Fig. 1 shows,
the MSA is based on a modular design that connects different
computing modules with distinct hardware and performance
characteristics. While each module is a parallel clustered
system (of potentially large sizes), a high-performance fed-
erated network connects the module-specific interconnects.
This creates a single high-performance heterogeneous system
seamlessly integrating a multi-tier storage system.

With the MSA, users can take advantage of the HPC sys-
tems that best suit their needs [19]. Users with low/medium-
scalable codes can benefit from a general purpose cluster
mainly consisting of CPUs (i.e., cluster module). Other users
with highly scalable codes (e.g., training of DL models) and

1JUNIQ - Jülich UNified Infrastructure for Quantum comput-
ing, https://www.fz-juelich.de/ias/jsc/EN/Expertise/
JUNIQ/_node.html

2https://www.deep-projects.eu/

Fig. 1: The MSA connects compute modules with different
hardware and performance characteristics to create a single
high-performance heterogeneous system.

more regular communication patterns can profit from a mas-
sively parallel and scalable HPC system consisting of mainly
GPUs (i.e., booster module). Furthermore, users with more
complex processing workflows can benefit from some charac-
teristics of both of these two architecture elements. They can
take advantage of the above mentioned classical architectures
(i.e., general purpose cluster vs. highly scalable booster) in
combination with innovative computing architectures such as
those specifically designed for data analytics (i.e., with large
memory), quantum computing, or neuromorphic computing.

JSC has already implemented the MSA in its large-scale
production systems, such as the JURECA [20] and JUWELS
[21] systems. According to the November 2021 Top500 list
3, JUWELS is currently the fastest supercomputer in Europe
and 8th fastest worldwide, and has two modules: cluster and
booster. The cluster module provides general purpose compu-
tational resources with more than 2300 compute nodes. The
booster is the highly scalable module of the system, leverag-
ing GPUs to provide computing performance. Both modules
are combined through their network fabric and file system,
and can be used at the same time by heterogeneous computing
tasks through a tight integration via the workload manager.

3. JUNIQ

JSC is researching advanced computing architectures such as
quantum computers, quantum simulators, quantum annealers,

3https://www.top500.org/



digital annealers and neuromorphic computers. JSC is cur-
rently focusing on the integration of quantum computing sys-
tems into its MSA environment through JUNIQ (see Fig. 2).

JUNIQ is a manufacturer-independent quantum com-
puting user facility, which provides European users from
academia and industry access and support to various types
of quantum computer emulators and quantum computing
technologies with different levels of technological maturity.

JUNIQ hosts and operates a D-Wave AdvantageTM quan-
tum system with more than 5000 qubits. By the end of next
year it will host also a quantum simulator with more that
100 qubits and this in the context of the recently funded Eu-
roHPC Joint Undertaking project HPCQS4. In addition to
these two quantum computers, JUNIQ will provide cloud
access to various other quantum computers with different
levels of technological maturity (i.e., experimental quantum
computing devices from university laboratories and startup
companies). The access is portal-based in the form of a
Quantum Computer Platform as a Service (QC-PaaS), which
uses the modern JupyterHub technology. The latter helps to
lower entry barriers for new users and facilitates the re-use of
simulation results in line with the European policy of open
science and open computing.

JUNIQ will provide a unique, manufacturer-independent
variety of quantum computing and hybrid quantum HPC ca-
pabilities to researchers across Europe via the cloud on a non-
commercial basis and is embedded in JSC’s unique service,
support, and education infrastructure.

With its mission to provide a manufacturer-independent,
comprehensive user infrastructure, JUNIQ develops software
tools, algorithms, and prototype applications. With the access
to the innovative hardware technologies, computing resources
and infrastructures of the JSC, different communities will be
able to advance in their research fields.

4. CONCLUSIONS AND OUTLOOK

To efficiently extract interpretable information and knowl-
edge from large amounts of complex and multi-source RS
data it is necessary to leverage innovative HPC technologies
and create novel software and tools for enhancing the pro-
cessing and addressing data storage challenges. The MSA
environment of the JSC brings substantial benefits for het-
erogeneous workloads since each processing step can be run
on an exactly matching system, improving time to solution
and energy use. The MSA is a successful approach to het-
erogeneous computing that enables the most efficient use of
computing resources while providing application developers
with all necessary tools to take the step from Petascale to
emerging Exascale computing.

In this context, the strategy of JSC is not to replace
classical HPC systems but rather augment them (i.e., like

4www,hpcqs.eu

Fig. 2: JUNIQ: Unified portal for cloud access to quantum
computer emulators and to different types of quantum com-
puters with different levels of technological maturity.

GPUs accelerators did with CPUs) with innovative computing
paradigms for speeding up selected optimization problems.
The deep integration of quantum computers in conventional
HPC systems is currently the most feasible way to address
real RS applications.
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