000909754 001__ 909754
000909754 005__ 20230502100730.0
000909754 0247_ $$2doi$$a10.1109/IGARSS46834.2022.9883655
000909754 0247_ $$2Handle$$a2128/32038
000909754 0247_ $$2WOS$$aWOS:000920916600051
000909754 037__ $$aFZJ-2022-03385
000909754 1001_ $$0P:(DE-Juel1)178695$$aSedona, Rocco$$b0$$eCorresponding author
000909754 1112_ $$aIEEE International Geoscience and Remote Sensing Symposium (IGARSS)$$cKuala Lumpur$$d2022-07-17 - 2022-07-22$$wMalaysia
000909754 245__ $$aAn Automatic Approach for the production of a Time Series of Consistent Land-cover Maps Based on Long-short Term Memory
000909754 260__ $$bIEEE$$c2022
000909754 300__ $$a203-206
000909754 3367_ $$2ORCID$$aCONFERENCE_PAPER
000909754 3367_ $$033$$2EndNote$$aConference Paper
000909754 3367_ $$2BibTeX$$aINPROCEEDINGS
000909754 3367_ $$2DRIVER$$aconferenceObject
000909754 3367_ $$2DataCite$$aOutput Types/Conference Paper
000909754 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1666008583_30577
000909754 520__ $$aThis paper presents an approach that aims to produce a Time-Series (TS) of consistent Land-Cover (LC) maps, typically needed to perform environmental monitoring. First, it creates an annual training set for each TS to be classified, leveraging on publicly available thematic products. These annual training sets are then used to generate a set of preliminary LC maps that allow for the identification of the unchanged areas, i.e., the stable temporal component. Such areas can be used to define an informative and reliable multi-year training set, by selecting samples belonging to the different years for all the classes. The multi-year training set is finally employed to train a unique multi-year Long Short Term Memory (LSTM) model, which enhances the consistency of the annual LC maps. The preliminary results carried out on three TSs of Sentinel 2 images acquired in Italy in 2018, 2019 and 2020 demonstrates the capability of the method to improve the consistency of the annual LC maps. The agreement of the obtained maps is ≈ 78%, compared to the ≈ 74% achieved by the LSTM models trained separately.
000909754 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000909754 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000909754 588__ $$aDataset connected to CrossRef Conference
000909754 7001_ $$0P:(DE-HGF)0$$aParis, Claudia$$b1
000909754 7001_ $$0P:(DE-HGF)0$$aTian, Liang$$b2
000909754 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b3
000909754 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b4
000909754 773__ $$a10.1109/IGARSS46834.2022.9883655
000909754 8564_ $$uhttps://juser.fz-juelich.de/record/909754/files/Rocco_Sedona_Paper_IGARSS2022.pdf$$yOpenAccess
000909754 909CO $$ooai:juser.fz-juelich.de:909754$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178695$$aForschungszentrum Jülich$$b0$$kFZJ
000909754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b3$$kFZJ
000909754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b4$$kFZJ
000909754 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000909754 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000909754 9141_ $$y2022
000909754 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909754 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000909754 980__ $$acontrib
000909754 980__ $$aVDB
000909754 980__ $$aUNRESTRICTED
000909754 980__ $$aI:(DE-Juel1)JSC-20090406
000909754 9801_ $$aFullTexts