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ABSTRACT

Regression analysis has a crucial role in many Earth Ob-
servation (EO) applications. The increasing availability and
recent development of new computing technologies moti-
vate further research to expand the capabilities and enhance
the performance of data analysis algorithms. In this paper,
the biophysical variable estimation problem is addressed. A
novel approach is proposed, which consists in a reformulated
Support Vector Regression (SVR) and leverages Quantum
Annealing (QA). In particular, the SVR optimization prob-
lem is reframed to a Quadratic Unconstrained Binary Opti-
mization (QUBO) problem. The algorithm is then tested on
the D-Wave Advantage quantum annealer. The experiments
presented in this paper show good results, despite current
hardware limitations, suggesting that this approach is viable
and has great potential.

Index Terms— Support vector regression, quantum com-
puting, quantum annealing, quantum machine learning, re-
mote sensing

1. INTRODUCTION

Regression analysis [1] aims at finding the relationship be-
tween a set of independent variables {x,} and a dependent
variable y. Regression methods cover a wide range of applica-
tions, including economics, marketing, sociology, epidemiol-
ogy and risk analysis [2]. Regression has enabled significant
advancements in the context of Remote Sensing (RS). For ex-
ample, biophysical parameters can be evaluated in a RS area
by analyzing the complex relations between measured quan-
tities, instead of relying on fixed and simplified assumptions
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[3]. Moreover, soft classification methods relying on logistic
regression have been successfully applied to RS multispectral
images [4].

In the Quantum Computing (QC) framework, an inter-
disciplinary field called Quantum Machine Learning (QML)
focuses on the enhancement of classical Machine Learning
(ML) algorithms by outsourcing computationally demanding
steps to a quantum computer, which has the potential to out-
perform classical computation. Both theoretical and practical
results have shown major improvements in several ML tasks
that are expected to be exploited in the near future, e.g., for
real applications with big data [5, 6]. Several quantum algo-
rithms performing regression tasks have been proposed, i.e.,
for linear regression [7] and ridge regression [8].

This work focuses on a class of quantum algorithms,
namely Quantum Annealing (QA). It is closely related to
Adiabatic Quantum Computation (AQC) [9] and exploits the
time evolution of a quantum mechanical system for solving
combinatorial optimization problems. It has proven itself as
a valuable asset in ML [10].

The objective of this paper is to define a novel Support
Vector Regression (SVR) method based on QA, referred to
as Quantum Support Vector Regression (QSVR). The main
contribution consists in the redefinition of the SVR optimiza-
tion problem [11] so that the training phase can be performed
using a quantum annealer. The implementation proposed in
this work is tested on a RS dataset and the hardware used
for the annealing process is the D-Wave Advantage quantum
processor, released by D-Wave Systems in 2020. The pur-
pose is to show how RS can benefit from existing quantum
technologies and which results can be obtained in regression
tasks. More details, including documented codes and results
related to Quantum Support Vector Regression (QSVR), will
be available on the repository of this work!.

1https ://gitlab.jsc.fz-juelich.de/sdlrs/
quantum-support-vector-regression



2. QUANTUM SUPPORT VECTOR REGRESSION

2.1. Classical SVR Formulation

Given a training set T = {(Xp,yn):n=0,...,N — 1},
where x,, € R¢ are the feature vectors and y,, € R are the tar-
get values, the conventional dual formulation of a SVR can be
summarized as the following Quadratic Programming (QP)
problem:
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The variables @ = {a,, : n =0,...,N — 1} and & =

{&, :n =0,...,N — 1} are the variables of the dual prob-
lem, whereas k(x,,, X,,) is the kernel function, C is a regular-
ization parameter and ¢ is the error sensitivity.

2.2. QUBO Problem Definition

In order to execute the QSVR algorithm on a D-Wave quan-
tum annealer, the optimization problem must be reformulated
as a Quadratic Unconstrained Binary Optimization (QUBO)
problem?. QUBO consists in the minimization of a quadratic
energy function E:

E=>aQia;, 3

1<j

where a; € {0,1} are the binary variables of the optimiza-
tion problem and @ is an upper-triangular real matrix called
QUBO weight matrix.

The required steps for the formulation of a QUBO prob-
lem are:

* Encoding of the solution space to a set of binary vari-
ables;

 Definition of penalty terms to account for the con-
straints;

* Computation of the QUBO weight matrix ().

2https ://docs.dwavesys.com/docs/latest/c_gs_3.html

Since the solutions of Egs. (1)-(2) are real values, i.e.,
Qn, Gy € R, the following binary encoding is used:
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where arcn ik, Gx (N+n)+x € 10,1} are binary variables,
K is the number of binary variables to encode «,, and &,,, B
is the base used for the encoding, and P > 0 is a parameter
that allows for negative exponents.

Then, a squared penalty term multiplied by ¢ is defined,
which includes the constraint of Eq. 2a. Another penalty
term controlled by the hyperparameter 3 is defined to enforce
that, for each n, at least one between «,, or &, is equal to
0. In the experiments the values used for £ and 8 were 1
and 20, respectively. The constraints in Eqgs. (2b)-(2c) are
automatically included through the encoding in Eqgs. (4)-(5),
since the maximum for «,, and &,, is given by
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The last step is rewriting Eqs. (1)-(2) in the form of an
energy function, as in Eq. (3), by substituting the variables
oy, and &, with their encoding and adding the penalty terms.
Therefore, the final formulation is the following:
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where Q is a 2K N x 2K N matrix whose elements are given
by:
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withn,m € {0,...,N—1},4,7€{0,...,K—1}and s,t €

{0,1}. Since Q is symmetric, the QUBO weight matrix Q,
which is upper-triangular, can be computed as Q;; = @ij +
Qjifori < jand Qu = Q.

It is important to mention that, in order to submit a QUBO
problem to a quantum annealer, an additional step is required,
called minor embedding [12]. Each binary variable a; is
mapped to a chain of qubits, i.e., physically connected qubits,
and each element of the QUBO matrix ();; (related to the
product a;a;) is mapped to a physical connection between
chains of qubits. The existence of an embedding for a given
QUBO weight matrix is a necessary condition for the problem
to be solvable by the quantum annealer.



Table 1: Values of MSE obtained on the test set for different combination methods and runs.

Run SVR QSVRI QSVR2 QSVR3 QSVR4 QSVR5 QSVR6
1 7961 109786 11.0244 11.0016 11.0811 10.2775 11.0849
2 12.1908 12.7688 12.7452 127919 12.9086 12.1013 12.9172
3 6.6338  10.5555  9.1293  11.2271 13.6113 10.9359 13.9183
4 9.6695 102681 102782 10.2851 10.3545  9.9055  10.3585
5 7.0943 117815 11.7834 11.7825 11.7844 10.9887  11.7845
6 12.4384  9.6309  9.6935  9.6967  9.7999  10.9737  9.8057
7 57134 97858  9.7859  9.7859  9.7859  9.1881  9.7859
8 6.8256  11.3143 11.4065 11353  11.4646 11.1698 11.4684
9 59804 95261  9.5289  9.5272  9.5315 89554  9.5317
10 94644 13.3755 13.3756 133764 13.3795 12.1185 13.3798

Average 83972  10.9985 10.8751 11.0827 113701 10.6614 11.4035

3. EXPERIMENTAL RESULTS

3.1. Dataset

For the experimental validation, the SeaBAM dataset for re-
gression has been used [13]. The dataset is used to estimate
the concentration of chlorophyll in water and each example
consists of a feature vector containing the data regarding 5
measures at different wavelengths and the associated level of
chlorophyll concentration. For the training phase the values
of the feature vectors and the target values have been con-
verted to the logarithmic domain, as in [14]. The original
values of the chlorophyll concentration ranges between 0.019
and 32.787 mg/m?>. The training set consists of 25 exam-
ples and the test set 668 examples. In each experimental run
a different training and test datsets were used by varying the
random seed used for their generation. The hyperparameters
related to the classical and the quantum SVR are determined
empirically on a validation set.

3.2. Experimental Setup

In the experimental phase, D-Wave Advantage is considered,
which is the latest quantum annealer devised by D-Wave
Systems. It is a quantum system composed of more than
5000 qubits and more than 35000 couplers, i.e., physical
interconnections between qubits, based on the so called Pe-
gasus qubit architecture. Access to D-Wave quantum and
hybrid solvers is granted through the D-Wave Leap® cloud
platform. Computing time on the D-Wave Advantage sys-
tem is provided through the Jiilich UNified Infrastructure for
Quantum computing (JUNIQ)*. The QSVR algorithm is then
compared with a classical SVR implementation, available in
the Scikit-learn Python library.

3https ://cloud.dwavesys.com/leap/
4https ://www.fz-juelich.de/ias/jsc/EN/Expertise/JUNIQ/
_node.html

3.3. Evaluation

The results of the comparison between the classical and quan-
tum SVR are depicted in Tab. 1. The metric used for the eval-
uation is the Mean Squared Error (MSE). The MSE achieved
by the SVR and QSVR for each run as well as the average
across all the experiments are reported. For each run, the hy-
perparameters v and C', used for both the classical and the
quantum implementation of the SVR, have been determined
empirically. The parameter values used for each QSVR run
are B = 2.5, K = 3 and P = 2. The annealer provides
as output a set of solutions whose number is selected by the
user; in this work 40 solutions for each run were considered.
The solutions of the annealer have been combined together
through a weighted average in order to produce the final solu-
tions. In this work, 6 different methods for combining the
solutions are considered. The basic principle behind each
of them is using the same dataset for the training phase to
compute the coefficients of a weighted average that are later
used to generate the final solution. The examples of the train-
ing set are evaluated using the solutions of the annealer and
then to each solution a coefficient is assigned, depending on
the values of a cost function between the actual values and
the predicted ones. The value of the weight coefficient for
a given solution is given by the multiplicative inverse of the
corresponding value of the cost function. The coefficients of
a weighted average must be non-negative and their sum must
be equal to 1: the former property is enforced by the choice of
the cost functions that are by definition non negative, whereas
the latter is achieved by a normalization procedure on the co-
efficients. Each solution differs by the cost function and the
normalization procedure used to determine the coefficients.
More precisely:

* QSVR 1: it uses MSE as loss function and each nor-
malized coefficient is obtained by dividing itself by the
sum of all the others;



¢ QSVR 2: it uses MSE as cost function and the soft-
max function to obtain the coefficients of the weighted
average;

* QSVR 3: it uses log-cosh as cost function and calcu-
lates the weights by dividing each score by the sum of
all the others;

* QSVR 4: it uses log-cosh as cost function and then the
softmax function to obtain the coefficients;

* QSVR 5: only the best solution in terms of MSE cost
function is considered, i.e., the coefficient associated to
the best solution is set to 1 whereas all the remaining
ones are set to 0;

* QSVR 6: to each solution the same weight is assigned
and is equal to ﬁ where M is the number of solutions.

For a deeper description of the combination methods, the
reader can refer to the repository related to this project.

In the experiments, the classical SVR performed better on
average in terms of MSE with respect of its quantum coun-
terpart. This is also due to the fact that, in this preliminary
study, a low number of training example is considered, as
the quantum annealer presents a tight memory limitation. As
expected, the simple average of the solutions, performed by
QSVR 6, returned the highest MSE. Among the different
combination methods, QSVR 5 showed slightly better re-
sults. However, it can be noticed that the difference in MSE
between the methods is quite low when compared to the clas-
sical SVR. It is also important to point out that, to the best of
our knowledge, this is the first attempt to apply such imple-
mentation to real-world data, and further analysis is needed,
considering a bigger dataset to assess the full potential of
QSVR.

4. CONCLUSIONS

In this work, the applicability of QA to the implementation
of a SVR using real-world data for training is verified. A
QA-based implementation of the SVR has been tested and
compared with the classical SVR on a remote sensing dataset
for regression. Even though the classical SVR, on average,
performed better than the QSVR, this constitutes an impor-
tant result and opens the path to further research in this field.
The next step is focusing on implementing different formula-
tions of the QSVR algorithm, i.e., for the embedding and the
energy function definition. Then, an increase in the number
of training examples considered at the same time would sig-
nificantly improve the MSE, nonetheless taking into account
the current limit in the number of available qubits, which will
eventually improve in the future.

5. REFERENCES

[1] N. R. Draper and H. Smith, Applied Regression Analy-
sis. John Wiley & Sons, 1998, vol. 326.

[2] L. Fahrmeir, T. Kneib, S. Lang, and B. Marx, Regres-
sion: Models, Methods and Applications.  Springer-
Verlag Berlin Heidelberg, 9 2013, vol. 9783642343339.

[3] D. Tuia et al., “Multioutput Support Vector Regression
for Remote Sensing Biophysical Parameter Estimation,”
IEEE Geoscience and Remote Sensing Letters, vol. 8,
pp. 804-808, 7 2011.

[4] Q. Cheng, P. K. Varshney, and M. K. Arora, “Logistic
Regression for Feature Selection and Soft Classification
of Remote Sensing Data,” IEEE Geoscience and Remote
Sensing Letters, vol. 3, pp. 491-494, 10 2006.

[5] J. Biamonte et al., “Quantum Machine Learning,” Na-
ture, vol. 549, no. 7671, pp. 195-202, 2017.

[6] A. Sebastianelli et al., “On circuit-based hybrid quan-
tum neural networks for remote sensing imagery clas-
sification,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 15, pp.
565-580, 2022.

[7] M. Schuld, I. Sinayskiy, and F. Petruccione, “Prediction
by linear regression on a quantum computer,” Physical
Review A, vol. 94, no. 2, Aug 2016.

[8] C. H. Yu, FE. Gao, and Q. Y. Wen, “An Improved Quan-
tum Algorithm for Ridge Regression,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 33, pp.
858-866, 3 2021.

[9] C. C. McGeoch, Adiabatic Quantum Computation and
Quantum Annealing: Theory and Practice. Morgan &
Claypool Publishers, 2014.

[10] W. Guan et al., “Quantum Machine Learning in High
Energy Physics,” Machine Learning: Science and Tech-
nology, vol. 2, p. 011003, 3 2021.

[11] H. Drucker et al., “Support vector regression machines,”
in NIPS, 1996.

[12] J. Cai, W. G. Macready, and A. Roy, “A Practical
Heuristic for Finding Graph Minors,” 2014.

[13] J. E. O’Reilly and S. Maritorena, “SeaBAM evalua-
tion data set,” Proc. SeaWiF'S Bio-Opt. Algorithm Mini
Workshop (SeaBAM), 1997.

[14] L. Pasolli, F. Melgani, and E. Blanzieri, “Gaussian Pro-
cess Regression for Estimating Chlorophyll Concentra-
tion in Subsurface Waters From Remote Sensing Data,”

IEEE Geoscience and Remote Sensing Letters, vol. 7,
no. 3, pp. 464468, 2010.



