Home > Publications database > Quantum SVR for Chlorophyll Concentration Estimation in Water With Remote Sensing > print |
001 | 909757 | ||
005 | 20230123110650.0 | ||
024 | 7 | _ | |a 10.1109/LGRS.2022.3200325 |2 doi |
024 | 7 | _ | |a 1545-598X |2 ISSN |
024 | 7 | _ | |a 1558-0571 |2 ISSN |
024 | 7 | _ | |a 2128/31864 |2 Handle |
024 | 7 | _ | |a WOS:000849255500003 |2 WOS |
037 | _ | _ | |a FZJ-2022-03388 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Pasetto, Edoardo |0 P:(DE-Juel1)191143 |b 0 |e Corresponding author |
245 | _ | _ | |a Quantum SVR for Chlorophyll Concentration Estimation in Water With Remote Sensing |
260 | _ | _ | |a New York, NY |c 2022 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1664858226_21675 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The increasing availability of quantum computers motivates researching their potential capabilities in enhancing the performance of data analysis algorithms. Similarly, as in other research communities, also in remote sensing (RS), it is not yet defined how its applications can benefit from the usage of quantum computing (QC). This letter proposes a formulation of the support vector regression (SVR) algorithm that can be executed by D-Wave quantum computers. Specifically, the SVR is mapped to a quadratic unconstrained binary optimization (QUBO) problem that is solved with quantum annealing (QA). The algorithm is tested on two different types of computing environments offered by D-Wave: the advantage system, which directly embeds the problem into the quantum processing unit (QPU), and a hybrid solver that employs both classical and QC resources. For the evaluation, we considered a biophysical variable estimation problem with RS data. The experimental results show that the proposed quantum SVR implementation can achieve comparable or, in some cases, better results than the classical implementation. This work is one of the first attempts to provide insight into how QA could be exploited and integrated in future RS workflows based on machine learning (ML) algorithms. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 1 |u fzj |
700 | 1 | _ | |a Melgani, Farid |0 0000-0001-9745-3732 |b 2 |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 3 |u fzj |
700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 4 |
773 | _ | _ | |a 10.1109/LGRS.2022.3200325 |g Vol. 19, p. 1 - 5 |0 PERI:(DE-600)2138738-2 |p 1 - 5 |t IEEE geoscience and remote sensing letters |v 19 |y 2022 |x 1545-598X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/909757/files/Invoice_APC600345220.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/909757/files/Edoardo_Pasetto_GRSL_2022.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:909757 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)191143 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)138295 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)171343 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE GEOSCI REMOTE S : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b IEEE GEOSCI REMOTE S : 2021 |d 2022-11-17 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|