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Abstract—The increasing availability of quantum computers
motivates researching their potential capabilities in enhancing
the performance of data analysis algorithms. Similarly, as in
other research communities, also in Remote Sensing (RS) it is
not yet defined how its applications can benefit from the usage
of quantum computing. This paper proposes a formulation of
the Support Vector Regression (SVR) algorithm that can be
executed by D-Wave quantum computers. Specifically, the SVR
is mapped to a Quadratic Unconstrained Binary Optimization
(QUBO) problem that is solved with Quantum Annealing (QA).
The algorithm is tested on two different types of computing
environments offered by D-Wave: The Advantage system, which
directly embeds the problem into the Quantum Processing Unit
(QPU), and a Hybrid solver that employs both classical and
quantum computing resources. For the evaluation, we considered
a biophysical variable estimation problem with RS data. The
experimental results show that the proposed quantum SVR
implementation can achieve comparable or in some cases better
results than the classical implementation. This work is one
of the first attempts to provide insight into how QA could
be exploited and integrated in future RS workflows based on
Machine Learning (ML) algorithms.

Index Terms—Support vector regression, quantum computing,
quantum annealing, quantum machine learning, remote sensing

I. INTRODUCTION

REGRESSION analysis is a statistical process whose
objective is to find the relationship between a set of

independent variables {x} and a dependent variable y [1]. It
holds an important role in many applications such as financial
forecasting [2], geomagnetic data reconstruction [3], market-
ing, sociology, epidemiology and risk analysis [4]. In the
field of RS, regression analysis has been applied in different
applications [5, 6].

In the context of Quantum Machine Learning (QML) [7]–
[9] only few works have already addressed regression anal-
ysis problems. For instance, a quantum version of a linear
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regression algorithm and of a ridge regression algorithm have
been proposed [10, 11]. Among the different paradigms of
Quantum Computing (QC), QA has recently provided promis-
ing results in diverse machine learning applications [12, 13].
QA is a metaheuristic for solving combinatorial optimization
problems [14, 15] . QA is closely related to Adiabatic Quantum
Computing (AQC) [16] which was shown to be polynomially
equivalent to the universal gate-based model, which is a
different paradigm of QC [17]. However, QA can only solve
a specific class of problems and therefore the redefinition of
ML algorithms in a suitable format is one of the central design
challenges when working with QA-enhanced ML models [18].
This work presents an implementation of the Support Vector
Regression (SVR) [19] algorithm that uses QA for solving
the optimization problem related to the training phase of
the SVR algorithm. Previous works tried to apply QA to
optimize the training procedure of a Support Vector Machine
for classification tasks [20].

A similar implementation of QA-optimized SVR algorithm
was proposed for facial landmarks detection [21]. Specifically,
our implementation uses a similar workflow for constructing
the QUBO, but the mathematical formulation presents some
differences in the constraints enforcement procedure (Section
II). Additionally, in this work we propose 6 different methods
to combine the solutions returned by the annealer when
running the problem on the Advantage system (Section II).
Moreover, our implementation was tested on both Hybrid and
direct QPU solvers, whereas [21] tested the Quantum Support
Vector Regression (QSVR) only on Hybrid solvers. This
work focuses on bio-physical parameter estimation related to
chlorophyll concentration in water [22]–[24]. The proposed
implementation was tested on a synthetic and a real RS dataset
related to chlorophyll concentration in water. The quantum
system used in the experiments was provided by the company
D-Wave. Specifically, the experimental validation was con-
ducted on the D-Wave Advantage system4.1 solver and the
hybrid binary quadratic model version2 hybrid solver. The
access to such computational resources was provided through
the D-Wave Leap cloud service. The purpose of this work is to
investigate how QA could improve existing machine learning
frameworks for RS applications.

II. QA-BASED IMPLEMENTATION OF SUPPORT VECTOR
REGRESSION

A. Support Vector Regression
The mathematical formulation of the ϵ-insentive SVR is now

briefly described. Let T = {(xn, yn), n = 0, . . . , N−1} be the
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dataset used for the training phase constituted by N training
samples. Each of such samples is formed by a feature vector
xn ∈ Rd, where d is the dimension of the feature space, and a
target value yn ∈ R. It can be shown, with some mathematical
manipulation, that the training phase amounts to the solving
of the following constrained optimization problem:

L(ααα, α̂αα) =
1

2

N−1∑
n=0

N−1∑
m=0

(αn − α̂n)(αm − α̂m)k(xn,xm)+ (1)

− ϵ

N−1∑
n=0

(αn + α̂n) +

N−1∑
n=0

(αn − α̂n)yn

where the constraints to be enforced are:

N−1∑
n=0

(αn − α̂n) = 0 (2a)

0 ≤ αn ≤ C (2b)

0 ≤ α̂n ≤ C (2c)

In the optimization problem, the terms ααα = {αn : n =
0, . . . , N − 1} and α̂̂α̂α = {α̂n : n = 0, . . . , N − 1} are the
variables with respect to which the problem is optimized.
The terms C and ϵ are parameters related to the SVR that
controls the overfitting and the error sensitivity, respectively.
After finding the values of ααα and α̂̂α̂α the prediction function is
defined as:

y(x) =

N∑
n=1

(αn − α̂n)k(x,xn) + b (3)

The value of b can be deducted from any data point for which
0 < αn < C or 0 < α̂n < C using the formula:

b = yn − ϵ−
N∑

m=1

(αm − α̂m)k(xn,xm) (4)

To obtain a more robust estimation of b it is preferable,
however, to average the result from multiple data points [25]

The term k(xn,xm) indicates the kernel function, in our
experiments a Radial Basis Function (RBF) kernel, whose
formula is given by: e(−γ||xn−xm||2), has been employed.

B. QUBO problem formulation

In order to be processed by the Quantum Annealer, a
problem must be in the form of either a Ising Spin problem
[26] or a QUBO. For our purposes the original optimization
problem related to the SVR was turned into a QUBO problem.
Such a problem can be expressed according to the following
formula:

E =
∑
i≤j

aiQi,jaj (5)

Terms ai ∈ {0, 1} are the binary variables of the QUBO
problem and Q is an upper-diagonal matrix called QUBO
weight matrix that defines the problem. To turn the original
problem into a QUBO it is first necessary to encode the

variables ααα and α̂̂α̂α in the binary variables ai. To do so the
following encoding strategy is applied [13]:

αn =

K−1∑
k=0

Bk−PaKn+k, (6)

α̂n =

K−1∑
k=0

Bk−PaK(N+n)+k, (7)

In the equations 6 and 7 the value K corresponds to the
number of logical qubits used to encode each variable, whereas
B is the value of the base used for the encoding. From the
above equations it is possible to note that the total number of
variables of the QUBO problem is 2KN and that the first KN
variables are used to encode the ααα variables whereas the last
KN ones are used to encode the variables α̂̂α̂α. The parameter
P ≥ 0 is used for enabling the usage of negative exponents in
the encoding procedure. To enforce the constraint defined in
equation 2a a square penalty term whose strength is regulated
by the hyperparameter ξ is added to the cost function. The
constraints in eq 2b and 2c are implicitly satisfied by the choice
of the hyperparameter C: from the equations it is possible to
see that the maximum value that each variable can take is:

C =

K−1∑
k=0

Bk. (8)

Therefore by choosing a value of C equal or higher than
this quantity it is possible to guarantee the enforcing of
the constraints. The lower bound is always satisfied because
each αn and α̂n is non-negative by definition. Moreover,
another penalty term, whose influence is controlled by the
hyperparameter β, is added to enforce that, for each value
of n, at least one of αn or α̂n is equal to 0, or equivalently:
αnα̂n = 0, n = 0, . . . , N − 1:

β

(N−1∑
0

αnα̂n

)
(9)

By adding the penalty terms to the cost functions and by
applying the encoding equations it is possible to obtain the
final formulation of the QUBO problem:

N−1∑
n,m=0

K−1∑
i,j=0

1∑
s,t=0

aK(sN+n)+i

Q̃K(sN+n)+i,K(tN+m)+jaK(tN+m)+j

(10)

The term Q̃ is a 2KN×2KN matrix that defines the problem,
whose elements are given by:

Q̃K(sN+n)+i,K(tN+m)+j = (−1)(1−δst)Bi+j−2P

(
1

2
k(xn,xm) + ξ − (1− s)tδnmβ)+

+ δnmδijB
i−P δst(ϵ+ (−1)(1−s)(1−t)tn)

(11)

with n,m ∈ {0, . . . , N − 1}, i, j ∈ {0, . . . ,K − 1} and s, t ∈
{0, 1}. Since the QUBO weight matrix Q is upper-triangular,
it is obtained from Q̃ by using the formula:
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Qi,j =


Q̃i,j + Q̃j,i, if i < j;

Q̃i,j , if i = j;

0, otherwise
(12)

This problem formulation is used for the QPU of the Advan-
tage system and the Leap’s Hybrid solver, as they both input a
binary quadratic problem. In the case of Leap’s Hybrid solver
the problem is optimized by using both classical and quantum
computing resources. The allocation of such resources and the
problem decomposition is done automatically by the solver.

The final step for optimizing a problem with the QPU
is the minor embedding [27]. In this process the QUBO
problem is embedded in the hardware architecture used for
the annealing. Specifically, each logical variable ai is mapped
to a chain of qubits, i.e., a group of connected qubits used
to represent a specific logical variable of the QUBO problem.
The reason why chains are needed is that it is not always
possible to directly map the optimization problem directly into
the hardware topology. The values of the elements Qi,j of
the Q matrix, which represent the coefficients associated to
the terms aiaj of the cost function, are mapped to physical
connections of chains of qubits.

C. Solutions combination Techniques

The Advantage system outputs 10000 reads (i.e., solutions)
with different levels of energy. In this work, we select the 40
solutions with the lowest energy and we fuse them to compute
the final solution (the number 40 is chosen arbitrarily and other
options can be considered). To combine them, we propose
six approaches based on different weighted average formulas.
The predictions of the 40 solutions are then evaluated on
the training dataset. To each of them is assigned a score
depending on the value of a specific loss function and such
scores are then used to obtain the coefficients of the weighted
average. Specifically, the scores are calculated by considering
the multiplicative inverse of the value of a loss function
between the actual and the predicted value, therefore a lower
value of the loss will be associated to a higher score value.
The loss functions considered are even and non-negative. The
combinations methods differ for the choice of the loss function
and how the scores are used to get the coefficients. Every
method ensures that each weight coefficient is non-negative,
its value is lower or equal than 1 and that their sum is equal
to 1. A brief description of the used methods is now provided:

• QSVR 1: employs a Mean Squared Error (MSE) loss
function and the weights coefficients are obtained by
dividing each scores by the sum of all of them

• QSVR 2: uses a MSE loss function and the coefficients
are obtained by applying a softmax operation on the
scores

• QSVR 3: uses a log-cosh loss function and the coeffi-
cients are obtained as in QSVR 1

• QSVR 4: uses a log-cosh loss function and the final
weights are obtained through the application of softmax
on the scores

• QSVR 5: Only the best solution in terms of MSE is
considered, this is done by setting the weights associated
to the best solution to 1 and all the others to 0

• QSVR 6: To each solution is assigned the same weight,
therefore a simple average is performed

III. DATASET DESCRIPTION

In this section a brief overview and description of the dataset
used for the experimental analysis is provided.

• MERIS: The first dataset used is a synthetic dataset
whose aim is to simulate the concentration of chlorophyll
concentration and its relation to optical measurements.
The wavelengths considered are the first eight spectral
bands of the MERIS sensor (412.5 nm, 442.5 nm, 490
nm, 510 nm, 560 nm, 620 nm, 665 nm, 681.25 nm). The
procedure employed to generate the dataset is the one
described in [28].

• SeaBAM:The dataset contains information about 919
measurements regarding chlorophyll-a water concentra-
tion performed in Europe and US. The value of concentra-
tion ranges between 0.019 and 32.787 mg/m3. The sen-
sor used for the measurements is the Sea-Viewing Wide
Field of View Sensor (SeaWIFS) and the wavelengths
considered in the experiments were 412, 443, 490, 510
and 555 nm.

In both case the feature vector is constructed by considering
the spectral measures at different wavelengths whereas the
target value is the corresponding chlorophyll concentration.

IV. EXPERIMENTAL ANALYSIS

For each dataset two experiments were conducted: one
using the D-Wave Advantage QPU and the other using Leap’s
Hybrid Binary Quadratic Model (BQM) solver. The imple-
mentation of the classical SVR was done using the Python
library sci-kit learn. In each setting 10 test runs were carried
out, each one using different datasets for training and testing
that were randomly chosen from the initial dataset. In each
problem instance the results were compared with a traditional
SVR on the same datasets. Moreover, the hyperparameters for
the quantum and the classical implementation of the SVR
were the same for each test run. For the experiments using
the Advantage solver the number of training samples was 30,
whereas for the hybrid solver the number was 50. The reason
for this is that the Advantage system could not always find
an embedding with bigger problem instances. This is likely
due to the structure of the problem itself that presents many
interactions between variables that makes difficult finding an
embedding as the number of variables increases [29]. In each
test run the hyperparameter γ was validated classically using
a validation dataset and a SVR, the validation dataset was
divided into 2 parts: the first one was used to train a classical
SVR with a given hyperparameter configuration values while
the other was used for testing. The configuration that achieved
the best performances in terms of mean squared error was
then used in the test run. The values of γ were selected from
the range [0.1, 0.5, 1, 1.5, 2, 3, 4, 5, 7, 10, 20, 50], whereas the
value of C was set to Cmin, with Cmin being the quantity
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defined in eq. 8, that is equal to the maximum value each αn

and α̂n can take. The values related to the problem encoding
were B = 4 and P = 1 for the synthetic dataset and B = 5
and P = 0 for the SeaBAM whereas the number of logical
qubits K used to encode the original problem variables was
equal to 2 in each test run. For the training phase with the
SeaBAM dataset the values of both the feature vector and the
target value were converted to the logarithmic domain as was
done in [22]–[24]. The reason for this is that the distribution
of the bio-physical quantities is assumed to be log-normally
distributed [30]. The Table I reports the result in terms of
MSE obtained by the hybrid solver on both the synthetic
and the seaBaM dataset, while the results obtained by the
Advantage system for the synthetic and SeaBAM dataset are
reported in Table II and III respectively. When considering
the experiments on the synthetic datasets the quantum SVR
achieved similar results to its classical counterpart on both the
hybrid solver and the Advantage system. In the experiments
on the SeaBAM dataset the QSVR on average performed
better than the classical one on the hybrid solver whereas
in the experiments using the Advantage system the classical
implementation performed slightly better but the quantum
version managed to obtain good results nevertheless and to
perform better on some test runs. The different versions of
QSVR performed similarly in the synthetic dataset while on
the SeaBAM dataset there was more variation within the
results, this might indicate that the correct choice for the
solutions combination technique becomes more important as
the data complexity increases. In the experiments with the
SeaBAM dataset the QSVR 5 managed to obtain the best
results in average among the different QSVR implementations
but in some specific problem instance it performed worse
compared to the other solutions combination techniques. The
QSVR 2 obtained the second best average results among the
quantum implementations but it was the implementation that
outperformed the classical one the most number of times, 5
out of 10. The link to the repository associated to this work
can be found at 1

V. CONCLUSIONS

The main objective of this work was to investigate how
QA could enhance a SVR algorithm for a RS application. The
proposed algorithm was tested on both the D-Wave Advantage
system and on the hybrid solver. The results show that the
quantum implementation of SVR could achieve similar or in
some cases even better results than the classical SVR. This is
indicative of the potential of QA especially when considering
that the original problem was continuous and unconstrained
and that it had to be modified and adapted in order to be
solved by the annealer. In general the hybrid solver provided
better results than the Advantage system and it could also
solve bigger problem instances. Therefore, in the near future
practical applications will likely run on a hybrid framework.
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TABLE I: values of MSE obtained by the classical and
quantum SVR implemented on the hybrid solver on both the
synthetic and the SeaBAM dataset. Values in bold indicates the
results where the quantum implementation performed better.

MERIS SeaBAM

Run SVR QSVR SVR QSVR
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2 0.1011 0.0882 8.0448 2.8367
3 0.1488 0.1392 11.3237 5.3423
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6 0.0973 0.0955 5.2729 6.365
7 0.0862 0.0869 3.6089 3.7882
8 0.1117 0.1223 6.4235 8.7816
9 0.1124 0.1225 8.5635 9.9013

10 0.1315 0.1056 5.4886 6.019

Average 0.1082 0.1102 7.7419 6.0963

Standard deviation 0.0199 0.0187 2.8409 2.0121
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