001     909761
005     20231116095327.0
024 7 _ |a 10.1016/j.jbc.2022.102430
|2 doi
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1067-8816
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
024 7 _ |a 2128/31900
|2 Handle
024 7 _ |a 36037966
|2 pmid
024 7 _ |a WOS:001088183800010
|2 WOS
037 _ _ |a FZJ-2022-03391
082 _ _ |a 610
100 1 _ |a Pauly, Thomas
|0 P:(DE-Juel1)184822
|b 0
245 _ _ |a Met/Val129 polymorphism of the full-length human prion protein dictates distinct pathways of amyloid formation
260 _ _ |a Bethesda, MD.
|c 2022
|b American Soc. for Biochemistry and Molecular Biology
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2022-10-01
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2022-10-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674826987_23400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Methionine/valine polymorphism at position 129 of the human prion protein, huPrP, is tightly associated with the pathogenic phenotype, disease progress, and age of onset of neurodegenerative diseases such as Creutzfeldt–Jakob disease or Fatal Familial Insomnia. This raises the question of whether and how the amino acid type at position 129 influences the structural properties of huPrP, affecting its folding, stability, and amyloid formation behavior. Here, our detailed biophysical characterization of the 129M and 129V variants of recombinant full-length huPrP(23–230) by amyloid formation kinetics, CD spectroscopy, molecular dynamics simulations, and sedimentation velocity analysis reveals differences in their aggregation propensity and oligomer content, leading to deviating pathways for the conversion into amyloid at acidic pH. We determined that the 129M variant exhibits less secondary structure content before amyloid formation and higher resistance to thermal denaturation compared to the 129V variant, whereas the amyloid conformation of both variants shows similar thermal stability. Additionally, our molecular dynamics simulations and rigidity analyses at the atomistic level identify intramolecular interactions responsible for the enhanced monomer stability of the 129M variant, involving more frequent minimum distances between E196 and R156, forming a salt bridge. Removal of the N-terminal half of the 129M full-length variant diminishes its differences compared to the 129V full-length variant and highlights the relevance of the flexible N terminus in huPrP. Taken together, our findings provide insight into structural properties of huPrP and the effects of the amino acid identity at position 129 on amyloid formation behavior.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 1
536 _ _ |a Forschergruppe Gohlke (hkf7_20200501)
|0 G:(DE-Juel1)hkf7_20200501
|c hkf7_20200501
|f Forschergruppe Gohlke
|x 2
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 3
542 _ _ |i 2022-10-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2022-08-25
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bolakhrif, Najoua
|0 P:(DE-Juel1)180739
|b 1
700 1 _ |a Kaiser, Jesko
|0 0000-0002-6429-0911
|b 2
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 3
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 4
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 5
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 6
|e Corresponding author
773 1 8 |a 10.1016/j.jbc.2022.102430
|b Elsevier BV
|d 2022-10-01
|n 10
|p 102430
|3 journal-article
|2 Crossref
|t Journal of Biological Chemistry
|v 298
|y 2022
|x 0021-9258
773 _ _ |a 10.1016/j.jbc.2022.102430
|g p. 102430 -
|0 PERI:(DE-600)1474604-9
|n 10
|p 102430
|t The journal of biological chemistry
|v 298
|y 2022
|x 0021-9258
856 4 _ |u https://juser.fz-juelich.de/record/909761/files/1-s2.0-S0021925822008730-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/909761/files/Revised_Manuscript_20220812.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909761
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184822
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180739
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162443
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172663
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 2
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 2
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
999 C 5 |a 10.1073/pnas.78.11.6675
|9 -- missing cx lookup --
|1 Prusiner
|p 6675 -
|2 Crossref
|t Proc. Natl. Acad. Sci.
|v 78
|y 1981
999 C 5 |a 10.1073/pnas.90.23.10962
|9 -- missing cx lookup --
|1 Pan
|p 10962 -
|2 Crossref
|t Proc. Natl. Acad. Sci.
|v 90
|y 1993
999 C 5 |a 10.1002/pro.5560021220
|9 -- missing cx lookup --
|1 Safar
|p 2206 -
|2 Crossref
|t Protein Sci.
|v 2
|y 1993
999 C 5 |a 10.1126/science.6801762
|9 -- missing cx lookup --
|1 Prusiner
|p 136 -
|2 Crossref
|t Science
|v 216
|y 1982
999 C 5 |a 10.1021/acs.chemrev.1c00196
|9 -- missing cx lookup --
|1 Willbold
|p 8285 -
|2 Crossref
|t Chem. Rev.
|v 121
|y 2021
999 C 5 |a 10.1016/j.molcel.2021.08.011
|9 -- missing cx lookup --
|1 Kraus
|p 4540 -
|2 Crossref
|t Mol. Cell
|v 81
|y 2021
999 C 5 |a 10.1038/s41594-020-0441-5
|9 -- missing cx lookup --
|1 Wang
|p 598 -
|2 Crossref
|t Nat. Struct. Mol. Biol.
|v 27
|y 2020
999 C 5 |a 10.1016/0140-6736(91)93128-V
|9 -- missing cx lookup --
|1 Collinge
|p 1441 -
|2 Crossref
|t Lancet
|v 337
|y 1991
999 C 5 |a 10.1038/352340a0
|9 -- missing cx lookup --
|1 Palmer
|p 340 -
|2 Crossref
|t Nature
|v 352
|y 1991
999 C 5 |a 10.1016/0140-6736(91)92953-Y
|9 -- missing cx lookup --
|1 Baker
|p 1286 -
|2 Crossref
|t Lancet
|v 337
|y 1991
999 C 5 |a 10.1007/s00401-021-02350-y
|9 -- missing cx lookup --
|1 Baiardi
|p 707 -
|2 Crossref
|t Acta Neuropathologica
|v 142
|y 2021
999 C 5 |a 10.1177/0891988710383576
|9 -- missing cx lookup --
|1 Brown
|p 277 -
|2 Crossref
|t J. Geriatr. Psychiatry Neurol.
|v 23
|y 2010
999 C 5 |a 10.1021/ja057076l
|9 -- missing cx lookup --
|1 Barducci
|p 2705 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 128
|y 2006
999 C 5 |a 10.1021/bi051277k
|9 -- missing cx lookup --
|1 Hosszu
|p 16649 -
|2 Crossref
|t Biochemistry
|v 44
|y 2005
999 C 5 |a 10.1002/ange.200903771
|9 -- missing cx lookup --
|1 Gerum
|p 9616 -
|2 Crossref
|t Angew. Chem.
|v 121
|y 2009
999 C 5 |1 Ziaunys
|y 2020
|2 Crossref
|o Ziaunys 2020
999 C 5 |1 Torrent
|y 2019
|2 Crossref
|o Torrent 2019
999 C 5 |a 10.1074/jbc.M809173200
|9 -- missing cx lookup --
|1 Hosszu
|p 21981 -
|2 Crossref
|t J. Biol. Chem.
|v 284
|y 2009
999 C 5 |a 10.1038/nprot.2006.202
|9 -- missing cx lookup --
|1 Greenfield
|p 2876 -
|2 Crossref
|t Nat. Protoc.
|v 1
|y 2006
999 C 5 |a 10.1021/ci400044m
|9 -- missing cx lookup --
|1 Pfleger
|p 1007 -
|2 Crossref
|t J. Chem. Inf. Model.
|v 53
|y 2013
999 C 5 |a 10.1371/journal.pone.0130289
|9 -- missing cx lookup --
|1 Rathi
|p 1 -
|2 Crossref
|t PLoS One
|v 10
|y 2015
999 C 5 |a 10.1002/wcms.1311
|1 Hermans
|9 -- missing cx lookup --
|2 Crossref
|t Wiley Interdiscip. Rev. Comput. Mol. Sci.
|v 7
|y 2017
999 C 5 |a 10.1074/jbc.M112.374504
|9 -- missing cx lookup --
|1 Valley
|p 34979 -
|2 Crossref
|t J. Biol. Chem.
|v 287
|y 2012
999 C 5 |1 Lee
|y 2019
|2 Crossref
|o Lee 2019
999 C 5 |a 10.1021/acschemneuro.8b00582
|9 -- missing cx lookup --
|1 Zhou
|p 2718 -
|2 Crossref
|t ACS Chem. Neurosci.
|v 10
|y 2019
999 C 5 |1 Malevanets
|y 2017
|2 Crossref
|o Malevanets 2017
999 C 5 |a 10.1021/ja2017703
|9 -- missing cx lookup --
|1 Baldwin
|p 14160 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 133
|y 2011
999 C 5 |a 10.1074/jbc.M313762200
|9 -- missing cx lookup --
|1 Hosszu
|p 28515 -
|2 Crossref
|t J. Biol. Chem.
|v 279
|y 2004
999 C 5 |a 10.1038/s42003-020-01126-6
|9 -- missing cx lookup --
|1 Hosszu
|p 1 -
|2 Crossref
|t Commun. Biol.
|v 3
|y 2020
999 C 5 |1 Tahiri-Alaoui
|y 1992
|2 Crossref
|o Tahiri-Alaoui 1992
999 C 5 |a 10.1073/pnas.0607745104
|9 -- missing cx lookup --
|1 Eghiaian
|p 7414 -
|2 Crossref
|t Proc. Natl. Acad. Sci.
|v 104
|y 2007
999 C 5 |a 10.1074/jbc.RA117.000990
|9 -- missing cx lookup --
|1 Engelke
|p 8020 -
|2 Crossref
|t J. Biol. Chem.
|v 293
|y 2018
999 C 5 |a 10.1073/pnas.97.1.145
|9 -- missing cx lookup --
|1 Zahn
|p 145 -
|2 Crossref
|t Proc. Natl. Acad. Sci.
|v 97
|y 2000
999 C 5 |a 10.1074/jbc.RA118.003116
|9 -- missing cx lookup --
|1 Rösener
|p 15748 -
|2 Crossref
|t J. Biol. Chem.
|v 293
|y 2018
999 C 5 |a 10.1016/S0006-3495(02)75469-6
|9 -- missing cx lookup --
|1 Schuck
|p 1096 -
|2 Crossref
|t Biophysical J.
|v 82
|y 2002
999 C 5 |a 10.1021/ja407527p
|9 -- missing cx lookup --
|1 Abskharon
|p 937 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 136
|y 2014
999 C 5 |y 2022
|2 Crossref
|o 2022
999 C 5 |a 10.1074/jbc.M114.559450
|9 -- missing cx lookup --
|1 Honda
|p 30355 -
|2 Crossref
|t J. Biol. Chem.
|v 289
|y 2014
999 C 5 |a 10.1021/jz501780a
|9 -- missing cx lookup --
|1 Izadi
|p 3863 -
|2 Crossref
|t J. Phys. Chem. Lett.
|v 5
|y 2014
999 C 5 |a 10.1002/jcc.20290
|9 -- missing cx lookup --
|1 Case
|p 1668 -
|2 Crossref
|t J. Comput. Chem.
|v 26
|y 2005
999 C 5 |a 10.1021/acs.jctc.9b00591
|9 -- missing cx lookup --
|1 Tian
|p 528 -
|2 Crossref
|t J. Chem. Theor. Comput.
|v 16
|y 2020
999 C 5 |a 10.1021/ct400341p
|9 -- missing cx lookup --
|1 Roe
|p 3084 -
|2 Crossref
|t J. Chem. Theor. Comput.
|v 9
|y 2013
999 C 5 |a 10.1002/prot.1081
|9 -- missing cx lookup --
|1 Jacobs
|p 150 -
|2 Crossref
|t Proteins: Struct. Funct. Bioinformatics
|v 44
|y 2001
999 C 5 |a 10.1371/journal.pone.0130289
|1 Rathi
|9 -- missing cx lookup --
|2 Crossref
|t PloS one
|v 10
|y 2015
999 C 5 |a 10.1016/S0022-2836(83)80079-5
|9 -- missing cx lookup --
|1 Barlow
|p 867 -
|2 Crossref
|t J. Mol. Biol.
|v 168
|y 1983
999 C 5 |a 10.1016/0021-9991(77)90098-5
|9 -- missing cx lookup --
|1 Ryckaert
|p 327 -
|2 Crossref
|t J. Comput. Phys.
|v 23
|y 1977
999 C 5 |a 10.1021/ct5010406
|9 -- missing cx lookup --
|1 Hopkins
|p 1864 -
|2 Crossref
|t J. Chem. Theor. Comput.
|v 11
|y 2015


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21