| Home > Publications database > Met/Val129 polymorphism of the full-length human prion protein dictates distinct pathways of amyloid formation > print |
| 001 | 909761 | ||
| 005 | 20231116095327.0 | ||
| 024 | 7 | _ | |a 10.1016/j.jbc.2022.102430 |2 doi |
| 024 | 7 | _ | |a 0021-9258 |2 ISSN |
| 024 | 7 | _ | |a 1067-8816 |2 ISSN |
| 024 | 7 | _ | |a 1083-351X |2 ISSN |
| 024 | 7 | _ | |a 2128/31900 |2 Handle |
| 024 | 7 | _ | |a 36037966 |2 pmid |
| 024 | 7 | _ | |a WOS:001088183800010 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-03391 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Pauly, Thomas |0 P:(DE-Juel1)184822 |b 0 |
| 245 | _ | _ | |a Met/Val129 polymorphism of the full-length human prion protein dictates distinct pathways of amyloid formation |
| 260 | _ | _ | |a Bethesda, MD. |c 2022 |b American Soc. for Biochemistry and Molecular Biology |
| 264 | _ | 1 | |3 print |2 Crossref |b Elsevier BV |c 2022-10-01 |
| 264 | _ | 1 | |3 print |2 Crossref |b Elsevier BV |c 2022-10-01 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674826987_23400 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Methionine/valine polymorphism at position 129 of the human prion protein, huPrP, is tightly associated with the pathogenic phenotype, disease progress, and age of onset of neurodegenerative diseases such as Creutzfeldt–Jakob disease or Fatal Familial Insomnia. This raises the question of whether and how the amino acid type at position 129 influences the structural properties of huPrP, affecting its folding, stability, and amyloid formation behavior. Here, our detailed biophysical characterization of the 129M and 129V variants of recombinant full-length huPrP(23–230) by amyloid formation kinetics, CD spectroscopy, molecular dynamics simulations, and sedimentation velocity analysis reveals differences in their aggregation propensity and oligomer content, leading to deviating pathways for the conversion into amyloid at acidic pH. We determined that the 129M variant exhibits less secondary structure content before amyloid formation and higher resistance to thermal denaturation compared to the 129V variant, whereas the amyloid conformation of both variants shows similar thermal stability. Additionally, our molecular dynamics simulations and rigidity analyses at the atomistic level identify intramolecular interactions responsible for the enhanced monomer stability of the 129M variant, involving more frequent minimum distances between E196 and R156, forming a salt bridge. Removal of the N-terminal half of the 129M full-length variant diminishes its differences compared to the 129V full-length variant and highlights the relevance of the flexible N terminus in huPrP. Taken together, our findings provide insight into structural properties of huPrP and the effects of the amino acid identity at position 129 on amyloid formation behavior. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 1 |
| 536 | _ | _ | |a Forschergruppe Gohlke (hkf7_20200501) |0 G:(DE-Juel1)hkf7_20200501 |c hkf7_20200501 |f Forschergruppe Gohlke |x 2 |
| 536 | _ | _ | |a 5244 - Information Processing in Neuronal Networks (POF4-524) |0 G:(DE-HGF)POF4-5244 |c POF4-524 |f POF IV |x 3 |
| 542 | _ | _ | |i 2022-10-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
| 542 | _ | _ | |i 2022-08-25 |2 Crossref |u http://creativecommons.org/licenses/by/4.0/ |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Bolakhrif, Najoua |0 P:(DE-Juel1)180739 |b 1 |
| 700 | 1 | _ | |a Kaiser, Jesko |0 0000-0002-6429-0911 |b 2 |
| 700 | 1 | _ | |a Nagel-Steger, Luitgard |0 P:(DE-Juel1)162443 |b 3 |
| 700 | 1 | _ | |a Gremer, Lothar |0 P:(DE-Juel1)145165 |b 4 |
| 700 | 1 | _ | |a Gohlke, Holger |0 P:(DE-Juel1)172663 |b 5 |
| 700 | 1 | _ | |a Willbold, Dieter |0 P:(DE-Juel1)132029 |b 6 |e Corresponding author |
| 773 | 1 | 8 | |a 10.1016/j.jbc.2022.102430 |b Elsevier BV |d 2022-10-01 |n 10 |p 102430 |3 journal-article |2 Crossref |t Journal of Biological Chemistry |v 298 |y 2022 |x 0021-9258 |
| 773 | _ | _ | |a 10.1016/j.jbc.2022.102430 |g p. 102430 - |0 PERI:(DE-600)1474604-9 |n 10 |p 102430 |t The journal of biological chemistry |v 298 |y 2022 |x 0021-9258 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/909761/files/1-s2.0-S0021925822008730-main.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/909761/files/Revised_Manuscript_20220812.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:909761 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)184822 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180739 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)162443 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145165 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172663 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)132029 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5244 |x 2 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-05-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J BIOL CHEM : 2019 |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-05-04 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-05-04 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-4-20200403 |k IBG-4 |l Bioinformatik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 2 |
| 920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 3 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-4-20200403 |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a APC |
| 999 | C | 5 | |a 10.1073/pnas.78.11.6675 |9 -- missing cx lookup -- |1 Prusiner |p 6675 - |2 Crossref |t Proc. Natl. Acad. Sci. |v 78 |y 1981 |
| 999 | C | 5 | |a 10.1073/pnas.90.23.10962 |9 -- missing cx lookup -- |1 Pan |p 10962 - |2 Crossref |t Proc. Natl. Acad. Sci. |v 90 |y 1993 |
| 999 | C | 5 | |a 10.1002/pro.5560021220 |9 -- missing cx lookup -- |1 Safar |p 2206 - |2 Crossref |t Protein Sci. |v 2 |y 1993 |
| 999 | C | 5 | |a 10.1126/science.6801762 |9 -- missing cx lookup -- |1 Prusiner |p 136 - |2 Crossref |t Science |v 216 |y 1982 |
| 999 | C | 5 | |a 10.1021/acs.chemrev.1c00196 |9 -- missing cx lookup -- |1 Willbold |p 8285 - |2 Crossref |t Chem. Rev. |v 121 |y 2021 |
| 999 | C | 5 | |a 10.1016/j.molcel.2021.08.011 |9 -- missing cx lookup -- |1 Kraus |p 4540 - |2 Crossref |t Mol. Cell |v 81 |y 2021 |
| 999 | C | 5 | |a 10.1038/s41594-020-0441-5 |9 -- missing cx lookup -- |1 Wang |p 598 - |2 Crossref |t Nat. Struct. Mol. Biol. |v 27 |y 2020 |
| 999 | C | 5 | |a 10.1016/0140-6736(91)93128-V |9 -- missing cx lookup -- |1 Collinge |p 1441 - |2 Crossref |t Lancet |v 337 |y 1991 |
| 999 | C | 5 | |a 10.1038/352340a0 |9 -- missing cx lookup -- |1 Palmer |p 340 - |2 Crossref |t Nature |v 352 |y 1991 |
| 999 | C | 5 | |a 10.1016/0140-6736(91)92953-Y |9 -- missing cx lookup -- |1 Baker |p 1286 - |2 Crossref |t Lancet |v 337 |y 1991 |
| 999 | C | 5 | |a 10.1007/s00401-021-02350-y |9 -- missing cx lookup -- |1 Baiardi |p 707 - |2 Crossref |t Acta Neuropathologica |v 142 |y 2021 |
| 999 | C | 5 | |a 10.1177/0891988710383576 |9 -- missing cx lookup -- |1 Brown |p 277 - |2 Crossref |t J. Geriatr. Psychiatry Neurol. |v 23 |y 2010 |
| 999 | C | 5 | |a 10.1021/ja057076l |9 -- missing cx lookup -- |1 Barducci |p 2705 - |2 Crossref |t J. Am. Chem. Soc. |v 128 |y 2006 |
| 999 | C | 5 | |a 10.1021/bi051277k |9 -- missing cx lookup -- |1 Hosszu |p 16649 - |2 Crossref |t Biochemistry |v 44 |y 2005 |
| 999 | C | 5 | |a 10.1002/ange.200903771 |9 -- missing cx lookup -- |1 Gerum |p 9616 - |2 Crossref |t Angew. Chem. |v 121 |y 2009 |
| 999 | C | 5 | |1 Ziaunys |y 2020 |2 Crossref |o Ziaunys 2020 |
| 999 | C | 5 | |1 Torrent |y 2019 |2 Crossref |o Torrent 2019 |
| 999 | C | 5 | |a 10.1074/jbc.M809173200 |9 -- missing cx lookup -- |1 Hosszu |p 21981 - |2 Crossref |t J. Biol. Chem. |v 284 |y 2009 |
| 999 | C | 5 | |a 10.1038/nprot.2006.202 |9 -- missing cx lookup -- |1 Greenfield |p 2876 - |2 Crossref |t Nat. Protoc. |v 1 |y 2006 |
| 999 | C | 5 | |a 10.1021/ci400044m |9 -- missing cx lookup -- |1 Pfleger |p 1007 - |2 Crossref |t J. Chem. Inf. Model. |v 53 |y 2013 |
| 999 | C | 5 | |a 10.1371/journal.pone.0130289 |9 -- missing cx lookup -- |1 Rathi |p 1 - |2 Crossref |t PLoS One |v 10 |y 2015 |
| 999 | C | 5 | |a 10.1002/wcms.1311 |1 Hermans |9 -- missing cx lookup -- |2 Crossref |t Wiley Interdiscip. Rev. Comput. Mol. Sci. |v 7 |y 2017 |
| 999 | C | 5 | |a 10.1074/jbc.M112.374504 |9 -- missing cx lookup -- |1 Valley |p 34979 - |2 Crossref |t J. Biol. Chem. |v 287 |y 2012 |
| 999 | C | 5 | |1 Lee |y 2019 |2 Crossref |o Lee 2019 |
| 999 | C | 5 | |a 10.1021/acschemneuro.8b00582 |9 -- missing cx lookup -- |1 Zhou |p 2718 - |2 Crossref |t ACS Chem. Neurosci. |v 10 |y 2019 |
| 999 | C | 5 | |1 Malevanets |y 2017 |2 Crossref |o Malevanets 2017 |
| 999 | C | 5 | |a 10.1021/ja2017703 |9 -- missing cx lookup -- |1 Baldwin |p 14160 - |2 Crossref |t J. Am. Chem. Soc. |v 133 |y 2011 |
| 999 | C | 5 | |a 10.1074/jbc.M313762200 |9 -- missing cx lookup -- |1 Hosszu |p 28515 - |2 Crossref |t J. Biol. Chem. |v 279 |y 2004 |
| 999 | C | 5 | |a 10.1038/s42003-020-01126-6 |9 -- missing cx lookup -- |1 Hosszu |p 1 - |2 Crossref |t Commun. Biol. |v 3 |y 2020 |
| 999 | C | 5 | |1 Tahiri-Alaoui |y 1992 |2 Crossref |o Tahiri-Alaoui 1992 |
| 999 | C | 5 | |a 10.1073/pnas.0607745104 |9 -- missing cx lookup -- |1 Eghiaian |p 7414 - |2 Crossref |t Proc. Natl. Acad. Sci. |v 104 |y 2007 |
| 999 | C | 5 | |a 10.1074/jbc.RA117.000990 |9 -- missing cx lookup -- |1 Engelke |p 8020 - |2 Crossref |t J. Biol. Chem. |v 293 |y 2018 |
| 999 | C | 5 | |a 10.1073/pnas.97.1.145 |9 -- missing cx lookup -- |1 Zahn |p 145 - |2 Crossref |t Proc. Natl. Acad. Sci. |v 97 |y 2000 |
| 999 | C | 5 | |a 10.1074/jbc.RA118.003116 |9 -- missing cx lookup -- |1 Rösener |p 15748 - |2 Crossref |t J. Biol. Chem. |v 293 |y 2018 |
| 999 | C | 5 | |a 10.1016/S0006-3495(02)75469-6 |9 -- missing cx lookup -- |1 Schuck |p 1096 - |2 Crossref |t Biophysical J. |v 82 |y 2002 |
| 999 | C | 5 | |a 10.1021/ja407527p |9 -- missing cx lookup -- |1 Abskharon |p 937 - |2 Crossref |t J. Am. Chem. Soc. |v 136 |y 2014 |
| 999 | C | 5 | |y 2022 |2 Crossref |o 2022 |
| 999 | C | 5 | |a 10.1074/jbc.M114.559450 |9 -- missing cx lookup -- |1 Honda |p 30355 - |2 Crossref |t J. Biol. Chem. |v 289 |y 2014 |
| 999 | C | 5 | |a 10.1021/jz501780a |9 -- missing cx lookup -- |1 Izadi |p 3863 - |2 Crossref |t J. Phys. Chem. Lett. |v 5 |y 2014 |
| 999 | C | 5 | |a 10.1002/jcc.20290 |9 -- missing cx lookup -- |1 Case |p 1668 - |2 Crossref |t J. Comput. Chem. |v 26 |y 2005 |
| 999 | C | 5 | |a 10.1021/acs.jctc.9b00591 |9 -- missing cx lookup -- |1 Tian |p 528 - |2 Crossref |t J. Chem. Theor. Comput. |v 16 |y 2020 |
| 999 | C | 5 | |a 10.1021/ct400341p |9 -- missing cx lookup -- |1 Roe |p 3084 - |2 Crossref |t J. Chem. Theor. Comput. |v 9 |y 2013 |
| 999 | C | 5 | |a 10.1002/prot.1081 |9 -- missing cx lookup -- |1 Jacobs |p 150 - |2 Crossref |t Proteins: Struct. Funct. Bioinformatics |v 44 |y 2001 |
| 999 | C | 5 | |a 10.1371/journal.pone.0130289 |1 Rathi |9 -- missing cx lookup -- |2 Crossref |t PloS one |v 10 |y 2015 |
| 999 | C | 5 | |a 10.1016/S0022-2836(83)80079-5 |9 -- missing cx lookup -- |1 Barlow |p 867 - |2 Crossref |t J. Mol. Biol. |v 168 |y 1983 |
| 999 | C | 5 | |a 10.1016/0021-9991(77)90098-5 |9 -- missing cx lookup -- |1 Ryckaert |p 327 - |2 Crossref |t J. Comput. Phys. |v 23 |y 1977 |
| 999 | C | 5 | |a 10.1021/ct5010406 |9 -- missing cx lookup -- |1 Hopkins |p 1864 - |2 Crossref |t J. Chem. Theor. Comput. |v 11 |y 2015 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|