000909762 001__ 909762
000909762 005__ 20230128125812.0
000909762 0247_ $$2doi$$a10.1007/s00253-022-12166-9
000909762 0247_ $$2ISSN$$a0171-1741
000909762 0247_ $$2ISSN$$a0175-7598
000909762 0247_ $$2ISSN$$a0340-2118
000909762 0247_ $$2ISSN$$a1432-0614
000909762 0247_ $$2Handle$$a2128/31997
000909762 0247_ $$2pmid$$a36109385
000909762 0247_ $$2WOS$$aWOS:000854705600002
000909762 037__ $$aFZJ-2022-03392
000909762 082__ $$a570
000909762 1001_ $$00000-0002-4891-5571$$aJayaraman, Kumaresan$$b0
000909762 245__ $$aProtein engineering for feedback resistance in 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase
000909762 260__ $$aNew York$$bSpringer$$c2022
000909762 3367_ $$2DRIVER$$aarticle
000909762 3367_ $$2DataCite$$aOutput Types/Journal article
000909762 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674827212_21430
000909762 3367_ $$2BibTeX$$aARTICLE
000909762 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909762 3367_ $$00$$2EndNote$$aJournal Article
000909762 520__ $$aThe shikimate pathway delivers aromatic amino acids (AAAs) in prokaryotes, fungi, and plants and is highly utilized in the industrial synthesis of bioactive compounds. Carbon flow into this pathway is controlled by the initial enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS). AAAs produced further downstream, phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), regulate DAHPS by feedback inhibition. Corynebacterium glutamicum, the industrial workhorse for amino acid production, has two isoenzymes of DAHPS, AroF (Tyr sensitive) and AroG (Phe and Tyr sensitive). Here, we introduce feedback resistance against Tyr in the class I DAHPS AroF (AroFcg). We pursued a consensus approach by drawing on structural modeling, sequence and structural comparisons, knowledge of feedback-resistant variants in E. coli homologs, and computed folding free energy changes. Two types of variants were predicted: Those where substitutions putatively either destabilize the inhibitor binding site or directly interfere with inhibitor binding. The recombinant variants were purified and assessed in enzyme activity assays in the presence or absence of Tyr. Of eight AroFcg variants, two yielded > 80% (E154N) and > 50% (P155L) residual activity at 5 mM Tyr and showed > 50% specific activity of the wt AroFcg in the absence of Tyr. Evaluation of two and four further variants at positions 154 and 155 yielded E154S, completely resistant to 5 mM Tyr, and P155I, which behaves similarly to P155L. Hence, feedback-resistant variants were found that are unlikely to evolve by point mutations from the parental gene and, thus, would be missed by classical strain engineering.
000909762 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000909762 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000909762 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x2
000909762 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x3
000909762 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x4
000909762 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909762 7001_ $$0P:(DE-HGF)0$$aTrachtmann, Natalia$$b1
000909762 7001_ $$00000-0002-7879-8978$$aSprenger, Georg A.$$b2$$eCorresponding author
000909762 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b3$$eCorresponding author
000909762 773__ $$0PERI:(DE-600)1464336-4$$a10.1007/s00253-022-12166-9$$p6505–6517$$tApplied microbiology and biotechnology$$v106$$x0171-1741$$y2022
000909762 8564_ $$uhttps://juser.fz-juelich.de/record/909762/files/s00253-022-12166-9.pdf$$yOpenAccess
000909762 909CO $$ooai:juser.fz-juelich.de:909762$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b3$$kFZJ
000909762 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000909762 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000909762 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x2
000909762 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x3
000909762 9141_ $$y2022
000909762 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000909762 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000909762 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909762 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000909762 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000909762 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909762 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL MICROBIOL BIOT : 2021$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-12
000909762 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL MICROBIOL BIOT : 2021$$d2022-11-12
000909762 920__ $$lyes
000909762 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
000909762 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
000909762 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000909762 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x3
000909762 980__ $$ajournal
000909762 980__ $$aVDB
000909762 980__ $$aI:(DE-Juel1)IBG-4-20200403
000909762 980__ $$aI:(DE-Juel1)IBI-7-20200312
000909762 980__ $$aI:(DE-Juel1)JSC-20090406
000909762 980__ $$aI:(DE-Juel1)NIC-20090406
000909762 980__ $$aUNRESTRICTED
000909762 9801_ $$aFullTexts