000909763 001__ 909763
000909763 005__ 20240715202023.0
000909763 0247_ $$2doi$$a10.1128/spectrum.01950-22
000909763 0247_ $$2Handle$$a2128/32299
000909763 0247_ $$2pmid$$a36094194
000909763 0247_ $$2WOS$$aWOS:000854191500002
000909763 037__ $$aFZJ-2022-03393
000909763 082__ $$a570
000909763 1001_ $$0P:(DE-Juel1)176186$$aRamp, Paul$$b0
000909763 245__ $$aPhysiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum
000909763 260__ $$aBirmingham, Ala.$$bASM$$c2022
000909763 3367_ $$2DRIVER$$aarticle
000909763 3367_ $$2DataCite$$aOutput Types/Journal article
000909763 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721025891_6762
000909763 3367_ $$2BibTeX$$aARTICLE
000909763 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909763 3367_ $$00$$2EndNote$$aJournal Article
000909763 520__ $$aInositols (cyclohexanehexols) comprise nine isomeric cyclic sugar alcohols, several of which occur in all domains of life with various functions. Many bacteria can utilize inositols as carbon and energy sources via a specific pathway involving inositol dehydrogenases (IDHs) as the first step of catabolism. The microbial cell factory Corynebacterium glutamicum can grow with myo-inositol as a sole carbon source. Interestingly, this species encodes seven potential IDHs, raising the question of the reason for this multiplicity. We therefore investigated the seven IDHs to determine their function, activity, and selectivity toward the biologically most important isomers myo-, scyllo-, and d-chiro-inositol. We created an ΔIDH strain lacking all seven IDH genes, which could not grow on the three inositols. scyllo- and d-chiro-inositol were identified as novel growth substrates of C. glutamicum. Complementation experiments showed that only four of the seven IDHs (IolG, OxiB, OxiD, and OxiE) enabled growth of the ΔIDH strain on two of the three inositols. The kinetics of the four purified enzymes agreed with the complementation results. IolG and OxiD are NAD+-dependent IDHs accepting myo- and d-chiro-inositol but not scyllo-inositol. OxiB is an NAD+-dependent myo-IDH with a weak activity also for scyllo-inositol but not for d-chiro-inositol. OxiE on the other hand is an NAD+-dependent scyllo-IDH showing also good activity for myo-inositol and a very weak activity for d-chiro-inositol. Structural models, molecular docking experiments, and sequence alignments enabled the identification of the substrate binding sites of the active IDHs and of residues allowing predictions on the substrate specificity. IMPORTANCE myo-, scyllo-, and d-chiro-inositol are C6 cyclic sugar alcohols with various biological functions, which also serve as carbon sources for microbes. Inositol catabolism starts with an oxidation to keto-inositols catalyzed by inositol dehydrogenases (IDHs). The soil bacterium C. glutamicum encodes seven potential IDHs. Using a combination of microbiological, biochemical, and modeling approaches, we analyzed the function of these enzymes and identified four IDHs involved in the catabolism of inositols. They possess distinct substrate preferences for the three isomers, and modeling and sequence alignments allowed the identification of residues important for substrate specificity. Our results expand the knowledge of bacterial inositol metabolism and provide an important basis for the rational development of producer strains for these valuable inositols, which show pharmacological activities against, e.g., Alzheimer's disease, polycystic ovarian syndrome, or type II diabetes. Keywords: Corynebacterium glutamicum; d-chiro-inositol; enzyme kinetics; inositol dehydrogenase; inositol metabolism; inositols; molecular docking; myo-inositol; scyllo-inositol; structural models.
000909763 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000909763 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000909763 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x2
000909763 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x3
000909763 536__ $$0G:(DE-Juel1)BioSC$$aBioSC - Bioeconomy Science Center (BioSC)$$cBioSC$$x4
000909763 536__ $$0G:(BMBF)031B0918A$$aBioökonomieREVIER_INNO: Entwicklung der Modellregion BioökonomieREVIER Rheinland, TP A (031B0918A)$$c031B0918A$$x5
000909763 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909763 7001_ $$00000-0002-5524-6978$$aPfleger, Christopher$$b1
000909763 7001_ $$00000-0003-2377-2268$$aDittrich, Jonas$$b2
000909763 7001_ $$0P:(DE-Juel1)128976$$aMack, Christina$$b3
000909763 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b4$$eCorresponding author
000909763 7001_ $$0P:(DE-Juel1)128943$$aBott, Michael$$b5$$eCorresponding author
000909763 773__ $$0PERI:(DE-600)2807133-5$$a10.1128/spectrum.01950-22$$gp. e01950-22$$n5$$pe01950-22$$tMicrobiology spectrum$$v10$$x2165-0497$$y2022
000909763 8564_ $$uhttps://juser.fz-juelich.de/record/909763/files/Invoice_94314707.pdf
000909763 8564_ $$uhttps://juser.fz-juelich.de/record/909763/files/Ramp%20et%20al%202022%20R1%20with%20figures.pdf$$yOpenAccess
000909763 8564_ $$uhttps://juser.fz-juelich.de/record/909763/files/spectrum.01950-22.pdf$$yOpenAccess
000909763 8767_ $$894314707$$92022-08-31$$a1200183966$$d2022-09-02$$eAPC$$jZahlung erfolgt$$zFZJ-2022-03186; USD 2030,-
000909763 909CO $$ooai:juser.fz-juelich.de:909763$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000909763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176186$$aForschungszentrum Jülich$$b0$$kFZJ
000909763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128976$$aForschungszentrum Jülich$$b3$$kFZJ
000909763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b4$$kFZJ
000909763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich$$b5$$kFZJ
000909763 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000909763 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000909763 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x2
000909763 9141_ $$y2022
000909763 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909763 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000909763 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909763 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000909763 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909763 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROBIOL SPECTR : 2021$$d2022-11-11
000909763 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000909763 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000909763 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-02-02T17:55:23Z
000909763 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-02-02T17:55:23Z
000909763 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review, Blind peer review$$d2022-02-02T17:55:23Z
000909763 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000909763 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000909763 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000909763 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000909763 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2022-11-11
000909763 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMICROBIOL SPECTR : 2021$$d2022-11-11
000909763 920__ $$lyes
000909763 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
000909763 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000909763 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000909763 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x3
000909763 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x4
000909763 980__ $$ajournal
000909763 980__ $$aVDB
000909763 980__ $$aI:(DE-Juel1)IBG-4-20200403
000909763 980__ $$aI:(DE-Juel1)JSC-20090406
000909763 980__ $$aI:(DE-Juel1)NIC-20090406
000909763 980__ $$aI:(DE-Juel1)IBI-7-20200312
000909763 980__ $$aI:(DE-Juel1)IBG-1-20101118
000909763 980__ $$aAPC
000909763 980__ $$aUNRESTRICTED
000909763 9801_ $$aAPC
000909763 9801_ $$aFullTexts