001     909763
005     20240715202023.0
024 7 _ |a 10.1128/spectrum.01950-22
|2 doi
024 7 _ |a 2128/32299
|2 Handle
024 7 _ |a 36094194
|2 pmid
024 7 _ |a WOS:000854191500002
|2 WOS
037 _ _ |a FZJ-2022-03393
082 _ _ |a 570
100 1 _ |a Ramp, Paul
|0 P:(DE-Juel1)176186
|b 0
245 _ _ |a Physiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum
260 _ _ |a Birmingham, Ala.
|c 2022
|b ASM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721025891_6762
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Inositols (cyclohexanehexols) comprise nine isomeric cyclic sugar alcohols, several of which occur in all domains of life with various functions. Many bacteria can utilize inositols as carbon and energy sources via a specific pathway involving inositol dehydrogenases (IDHs) as the first step of catabolism. The microbial cell factory Corynebacterium glutamicum can grow with myo-inositol as a sole carbon source. Interestingly, this species encodes seven potential IDHs, raising the question of the reason for this multiplicity. We therefore investigated the seven IDHs to determine their function, activity, and selectivity toward the biologically most important isomers myo-, scyllo-, and d-chiro-inositol. We created an ΔIDH strain lacking all seven IDH genes, which could not grow on the three inositols. scyllo- and d-chiro-inositol were identified as novel growth substrates of C. glutamicum. Complementation experiments showed that only four of the seven IDHs (IolG, OxiB, OxiD, and OxiE) enabled growth of the ΔIDH strain on two of the three inositols. The kinetics of the four purified enzymes agreed with the complementation results. IolG and OxiD are NAD+-dependent IDHs accepting myo- and d-chiro-inositol but not scyllo-inositol. OxiB is an NAD+-dependent myo-IDH with a weak activity also for scyllo-inositol but not for d-chiro-inositol. OxiE on the other hand is an NAD+-dependent scyllo-IDH showing also good activity for myo-inositol and a very weak activity for d-chiro-inositol. Structural models, molecular docking experiments, and sequence alignments enabled the identification of the substrate binding sites of the active IDHs and of residues allowing predictions on the substrate specificity. IMPORTANCE myo-, scyllo-, and d-chiro-inositol are C6 cyclic sugar alcohols with various biological functions, which also serve as carbon sources for microbes. Inositol catabolism starts with an oxidation to keto-inositols catalyzed by inositol dehydrogenases (IDHs). The soil bacterium C. glutamicum encodes seven potential IDHs. Using a combination of microbiological, biochemical, and modeling approaches, we analyzed the function of these enzymes and identified four IDHs involved in the catabolism of inositols. They possess distinct substrate preferences for the three isomers, and modeling and sequence alignments allowed the identification of residues important for substrate specificity. Our results expand the knowledge of bacterial inositol metabolism and provide an important basis for the rational development of producer strains for these valuable inositols, which show pharmacological activities against, e.g., Alzheimer's disease, polycystic ovarian syndrome, or type II diabetes. Keywords: Corynebacterium glutamicum; d-chiro-inositol; enzyme kinetics; inositol dehydrogenase; inositol metabolism; inositols; molecular docking; myo-inositol; scyllo-inositol; structural models.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 2
536 _ _ |a Forschergruppe Gohlke (hkf7_20200501)
|0 G:(DE-Juel1)hkf7_20200501
|c hkf7_20200501
|f Forschergruppe Gohlke
|x 3
536 _ _ |a BioSC - Bioeconomy Science Center (BioSC)
|0 G:(DE-Juel1)BioSC
|c BioSC
|x 4
536 _ _ |a BioökonomieREVIER_INNO: Entwicklung der Modellregion BioökonomieREVIER Rheinland, TP A (031B0918A)
|0 G:(BMBF)031B0918A
|c 031B0918A
|x 5
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pfleger, Christopher
|0 0000-0002-5524-6978
|b 1
700 1 _ |a Dittrich, Jonas
|0 0000-0003-2377-2268
|b 2
700 1 _ |a Mack, Christina
|0 P:(DE-Juel1)128976
|b 3
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 4
|e Corresponding author
700 1 _ |a Bott, Michael
|0 P:(DE-Juel1)128943
|b 5
|e Corresponding author
773 _ _ |a 10.1128/spectrum.01950-22
|g p. e01950-22
|0 PERI:(DE-600)2807133-5
|n 5
|p e01950-22
|t Microbiology spectrum
|v 10
|y 2022
|x 2165-0497
856 4 _ |u https://juser.fz-juelich.de/record/909763/files/Invoice_94314707.pdf
856 4 _ |u https://juser.fz-juelich.de/record/909763/files/Ramp%20et%20al%202022%20R1%20with%20figures.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/909763/files/spectrum.01950-22.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909763
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176186
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172663
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128943
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 2
914 1 _ |y 2022
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROBIOL SPECTR : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-02-02T17:55:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-02-02T17:55:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review, Blind peer review
|d 2022-02-02T17:55:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2022-11-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MICROBIOL SPECTR : 2021
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 2
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 3
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21