000909773 001__ 909773
000909773 005__ 20230123110651.0
000909773 0247_ $$2doi$$a10.1371/journal.pone.0274569
000909773 0247_ $$2Handle$$a2128/31863
000909773 0247_ $$2pmid$$a36107916
000909773 0247_ $$2WOS$$aWOS:000892087100079
000909773 037__ $$aFZJ-2022-03403
000909773 082__ $$a610
000909773 1001_ $$00000-0002-3916-1085$$aE. Samadi, Moein$$b0$$eCorresponding author
000909773 245__ $$aA training strategy for hybrid models to break the curse of dimensionality
000909773 260__ $$aSan Francisco, California, US$$bPLOS$$c2022
000909773 3367_ $$2DRIVER$$aarticle
000909773 3367_ $$2DataCite$$aOutput Types/Journal article
000909773 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663671765_27718
000909773 3367_ $$2BibTeX$$aARTICLE
000909773 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909773 3367_ $$00$$2EndNote$$aJournal Article
000909773 520__ $$aMechanistic/data-driven hybrid modeling is a key approach when the mechanistic details of the processes at hand are not sufficiently well understood, but also inferring a model purely from data is too complex. By the integration of first principles into a data-driven approach, hybrid modeling promises a feasible data demand alongside extrapolation. In this work, we introduce a learning strategy for tree-structured hybrid models to perform a binary classification task. Given a set of binary labeled data, the challenge is to use them to develop a model that accurately assesses labels of new unlabeled data. Our strategy employs graph-theoretic methods to analyze the data and deduce a function that maps input features to output labels. Our focus here is on data sets represented by binary features in which the label assessment of unlabeled data points is always extrapolation. Our strategy shows the existence of small sets of data points within given binary data for which knowing the labels allows for extrapolation to the entire valid input space. An implementation of our strategy yields a notable reduction of training-data demand in a binary classification task compared with different supervised machine learning algorithms. As an application, we have fitted a tree-structured hybrid model to the vital status of a cohort of COVID-19 patients requiring intensive-care unit treatment and mechanical ventilation. Our learning strategy yields the existence of patient cohorts for whom knowing the vital status enables extrapolation to the entire valid input space of the developed hybrid model.
000909773 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000909773 536__ $$0G:(BMBF)01ZZ1803M$$aSMITH - Medizininformatik-Konsortium - Beitrag Forschungszentrum Jülich (01ZZ1803M)$$c01ZZ1803M$$x1
000909773 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909773 7001_ $$0P:(DE-HGF)0$$aKiefer, Sandra$$b1
000909773 7001_ $$0P:(DE-Juel1)185651$$aFritsch, Sebastian Johaness$$b2
000909773 7001_ $$0P:(DE-HGF)0$$aBickenbach, Johannes$$b3
000909773 7001_ $$0P:(DE-HGF)0$$aSchuppert, Andreas$$b4
000909773 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0274569$$gVol. 17, no. 9, p. e0274569 -$$n9$$pe0274569 -$$tPLOS ONE$$v17$$x1932-6203$$y2022
000909773 8564_ $$uhttps://juser.fz-juelich.de/record/909773/files/Full%20text.pdf$$yOpenAccess
000909773 909CO $$ooai:juser.fz-juelich.de:909773$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185651$$aForschungszentrum Jülich$$b2$$kFZJ
000909773 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000909773 9141_ $$y2022
000909773 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909773 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000909773 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000909773 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000909773 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-04
000909773 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909773 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-04
000909773 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2021$$d2022-11-16
000909773 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000909773 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000909773 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-04-12T10:14:32Z
000909773 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-04-12T10:14:32Z
000909773 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-04-12T10:14:32Z
000909773 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-16
000909773 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-16
000909773 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000909773 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000909773 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-16
000909773 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-16
000909773 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-16
000909773 920__ $$lno
000909773 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000909773 980__ $$ajournal
000909773 980__ $$aVDB
000909773 980__ $$aUNRESTRICTED
000909773 980__ $$aI:(DE-Juel1)JSC-20090406
000909773 9801_ $$aFullTexts