000909775 001__ 909775
000909775 005__ 20230123110651.0
000909775 0247_ $$2doi$$a10.1039/D2RA04019K
000909775 0247_ $$2Handle$$a2128/31866
000909775 0247_ $$2pmid$$a36093247
000909775 0247_ $$2WOS$$aWOS:000843638400001
000909775 037__ $$aFZJ-2022-03405
000909775 082__ $$a540
000909775 1001_ $$0P:(DE-HGF)0$$aSchmitt, Laura Maria$$b0
000909775 245__ $$aMembrane tension controls the phase equilibrium in fusogenic liposomes
000909775 260__ $$aLondon$$bRSC Publishing$$c2022
000909775 3367_ $$2DRIVER$$aarticle
000909775 3367_ $$2DataCite$$aOutput Types/Journal article
000909775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669649032_22051
000909775 3367_ $$2BibTeX$$aARTICLE
000909775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909775 3367_ $$00$$2EndNote$$aJournal Article
000909775 520__ $$aFusogenic liposomes have been widely used for molecule delivery to cell membranes and cell interior. However, their physicochemical state is still little understood. We tested mechanical material behavior by micropipette aspiration of giant vesicles from fusogenic lipid mixtures and found that the membranes of these vesicles are fluid and under high mechanical tension even before aspiration. Based on this result, we developed a theoretical framework to determine the area expansion modulus and membrane tension of such pre-tensed vesicles from aspiration experiments. Surprisingly high membrane tension of 2.1 mN m−1 and very low area expansion modulus of 63 mN m−1 were found. We interpret these peculiar material properties as the result of a mechanically driven phase transition between the usual lamellar phase and an, as of now, not finally determined three dimensional phase of the lipid mixture. The free enthalpy of transition between these phases is very low, i.e. on the order of the thermal energy.
000909775 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000909775 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909775 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b1
000909775 7001_ $$0P:(DE-HGF)0$$aKolasinac, Rejhana$$b2
000909775 7001_ $$0P:(DE-Juel1)128805$$aCsiszar, Agnes$$b3
000909775 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b4$$eCorresponding author
000909775 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/D2RA04019K$$gVol. 12, no. 37, p. 24114 - 24129$$n37$$p24114 - 24129$$tRSC Advances$$v12$$x2046-2069$$y2022
000909775 8564_ $$uhttps://juser.fz-juelich.de/record/909775/files/Invoice_INV_020668.pdf
000909775 8564_ $$uhttps://juser.fz-juelich.de/record/909775/files/d2ra04019k.pdf$$yOpenAccess
000909775 8767_ $$8INV_020668$$92022-08-19$$a1200183801$$d2022-08-26$$eAPC$$jZahlung erfolgt$$zFZJ-2022-03105; GBP 722,50
000909775 909CO $$ooai:juser.fz-juelich.de:909775$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000909775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b1$$kFZJ
000909775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128805$$aForschungszentrum Jülich$$b3$$kFZJ
000909775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b4$$kFZJ
000909775 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000909775 9141_ $$y2022
000909775 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909775 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909775 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000909775 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000909775 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000909775 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000909775 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909775 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000909775 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-22$$wger
000909775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2021$$d2022-11-22
000909775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000909775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000909775 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-04-12T10:35:44Z
000909775 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-04-12T10:35:44Z
000909775 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-04-12T10:35:44Z
000909775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000909775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000909775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-22
000909775 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-22
000909775 920__ $$lyes
000909775 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0
000909775 980__ $$ajournal
000909775 980__ $$aVDB
000909775 980__ $$aI:(DE-Juel1)IBI-2-20200312
000909775 980__ $$aAPC
000909775 980__ $$aUNRESTRICTED
000909775 9801_ $$aAPC
000909775 9801_ $$aFullTexts