000909777 001__ 909777
000909777 005__ 20240213111711.0
000909777 0247_ $$2doi$$a10.1038/s41467-022-32102-9
000909777 0247_ $$2Handle$$a2128/31858
000909777 0247_ $$2pmid$$a35977954
000909777 0247_ $$2WOS$$aWOS:001124833500001
000909777 037__ $$aFZJ-2022-03407
000909777 082__ $$a500
000909777 1001_ $$0P:(DE-HGF)0$$aSri-Ranjan, K.$$b0$$eCorresponding author
000909777 245__ $$aIntrinsic cell rheology drives junction maturation
000909777 260__ $$a[London]$$bNature Publishing Group UK$$c2022
000909777 3367_ $$2DRIVER$$aarticle
000909777 3367_ $$2DataCite$$aOutput Types/Journal article
000909777 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663655147_5639
000909777 3367_ $$2BibTeX$$aARTICLE
000909777 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909777 3367_ $$00$$2EndNote$$aJournal Article
000909777 520__ $$aA fundamental property of higher eukaryotes that underpins their evolutionary success is stable cell-cell cohesion. Yet, how intrinsic cell rheology and stiffness contributes to junction stabilization and maturation is poorly understood. We demonstrate that localized modulation of cell rheology governs the transition of a slack, undulated cell-cell contact (weak adhesion) to a mature, straight junction (optimal adhesion). Cell pairs confined on different geometries have heterogeneous elasticity maps and control their own intrinsic rheology co-ordinately. More compliant cell pairs grown on circles have slack contacts, while stiffer triangular cell pairs favour straight junctions with flanking contractile thin bundles. Counter-intuitively, straighter cell-cell contacts have reduced receptor density and less dynamic junctional actin, suggesting an unusual adaptive mechano-response to stabilize cell-cell adhesion. Our modelling informs that slack junctions arise from failure of circular cell pairs to increase their own intrinsic stiffness and resist the pressures from the neighbouring cell. The inability to form a straight junction can be reversed by increasing mechanical stress artificially on stiffer substrates. Our data inform on the minimal intrinsic rheology to generate a mature junction and provide a springboard towards understanding elements governing tissue-level mechanics.
000909777 536__ $$0G:(DE-HGF)POF4-333$$a333 - Integrative Biomedizin (POF4-333)$$cPOF4-333$$fPOF IV$$x0
000909777 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x1
000909777 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x2
000909777 536__ $$0G:(GEPRIS)273723265$$aDFG project 273723265 - Mechanosensation und Mechanoreaktion in epidermalen Systemen $$c273723265$$x3
000909777 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909777 7001_ $$00000-0003-2942-0079$$aSanchez-Alonso, J. L.$$b1
000909777 7001_ $$0P:(DE-HGF)0$$aSwiatlowska, P.$$b2
000909777 7001_ $$0P:(DE-HGF)0$$aRothery, S.$$b3
000909777 7001_ $$00000-0002-5461-0344$$aNovak, P.$$b4
000909777 7001_ $$0P:(DE-Juel1)171121$$aGerlach, S.$$b5
000909777 7001_ $$0P:(DE-Juel1)188726$$aKoeninger, D.$$b6
000909777 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b7
000909777 7001_ $$0P:(DE-Juel1)128833$$aMerkel, R.$$b8
000909777 7001_ $$0P:(DE-HGF)0$$aStevens, M. M.$$b9
000909777 7001_ $$00000-0002-9077-7088$$aSun, S. X.$$b10
000909777 7001_ $$00000-0003-1148-9158$$aGorelik, J.$$b11
000909777 7001_ $$00000-0003-0546-7163$$aBraga, Vania M. M.$$b12
000909777 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-022-32102-9$$gVol. 13, no. 1, p. 4832$$n1$$p4832$$tNature Communications$$v13$$x2041-1723$$y2022
000909777 8564_ $$uhttps://juser.fz-juelich.de/record/909777/files/s41467-022-32102-9.pdf$$yOpenAccess
000909777 909CO $$ooai:juser.fz-juelich.de:909777$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909777 9101_ $$0I:(DE-HGF)0$$60000-0003-2942-0079$$aExternal Institute$$b1$$kExtern
000909777 9101_ $$0I:(DE-HGF)0$$60000-0002-5461-0344$$aExternal Institute$$b4$$kExtern
000909777 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171121$$aForschungszentrum Jülich$$b5$$kFZJ
000909777 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188726$$aForschungszentrum Jülich$$b6$$kFZJ
000909777 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b7$$kFZJ
000909777 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b8$$kFZJ
000909777 9101_ $$0I:(DE-HGF)0$$60000-0003-1148-9158$$aExternal Institute$$b11$$kExtern
000909777 9101_ $$0I:(DE-HGF)0$$60000-0003-0546-7163$$aExternal Institute$$b12$$kExtern
000909777 9131_ $$0G:(DE-HGF)POF4-333$$1G:(DE-HGF)POF4-330$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lSystemmedizin und Herz-Kreislauf-Erkrankungen$$vIntegrative Biomedizin$$x0
000909777 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x1
000909777 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x2
000909777 9141_ $$y2022
000909777 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000909777 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000909777 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000909777 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909777 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000909777 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909777 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000909777 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000909777 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000909777 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000909777 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000909777 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000909777 920__ $$lyes
000909777 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0
000909777 980__ $$ajournal
000909777 980__ $$aVDB
000909777 980__ $$aUNRESTRICTED
000909777 980__ $$aI:(DE-Juel1)IBI-2-20200312
000909777 9801_ $$aFullTexts