001 | 909777 | ||
005 | 20240213111711.0 | ||
024 | 7 | _ | |a 10.1038/s41467-022-32102-9 |2 doi |
024 | 7 | _ | |a 2128/31858 |2 Handle |
024 | 7 | _ | |a 35977954 |2 pmid |
024 | 7 | _ | |a WOS:001124833500001 |2 WOS |
037 | _ | _ | |a FZJ-2022-03407 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Sri-Ranjan, K. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Intrinsic cell rheology drives junction maturation |
260 | _ | _ | |a [London] |c 2022 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1663655147_5639 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A fundamental property of higher eukaryotes that underpins their evolutionary success is stable cell-cell cohesion. Yet, how intrinsic cell rheology and stiffness contributes to junction stabilization and maturation is poorly understood. We demonstrate that localized modulation of cell rheology governs the transition of a slack, undulated cell-cell contact (weak adhesion) to a mature, straight junction (optimal adhesion). Cell pairs confined on different geometries have heterogeneous elasticity maps and control their own intrinsic rheology co-ordinately. More compliant cell pairs grown on circles have slack contacts, while stiffer triangular cell pairs favour straight junctions with flanking contractile thin bundles. Counter-intuitively, straighter cell-cell contacts have reduced receptor density and less dynamic junctional actin, suggesting an unusual adaptive mechano-response to stabilize cell-cell adhesion. Our modelling informs that slack junctions arise from failure of circular cell pairs to increase their own intrinsic stiffness and resist the pressures from the neighbouring cell. The inability to form a straight junction can be reversed by increasing mechanical stress artificially on stiffer substrates. Our data inform on the minimal intrinsic rheology to generate a mature junction and provide a springboard towards understanding elements governing tissue-level mechanics. |
536 | _ | _ | |a 333 - Integrative Biomedizin (POF4-333) |0 G:(DE-HGF)POF4-333 |c POF4-333 |x 0 |f POF IV |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |x 1 |f POF IV |
536 | _ | _ | |a 5243 - Information Processing in Distributed Systems (POF4-524) |0 G:(DE-HGF)POF4-5243 |c POF4-524 |x 2 |f POF IV |
536 | _ | _ | |a DFG project 273723265 - Mechanosensation und Mechanoreaktion in epidermalen Systemen |0 G:(GEPRIS)273723265 |c 273723265 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Sanchez-Alonso, J. L. |0 0000-0003-2942-0079 |b 1 |
700 | 1 | _ | |a Swiatlowska, P. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Rothery, S. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Novak, P. |0 0000-0002-5461-0344 |b 4 |
700 | 1 | _ | |a Gerlach, S. |0 P:(DE-Juel1)171121 |b 5 |
700 | 1 | _ | |a Koeninger, D. |0 P:(DE-Juel1)188726 |b 6 |
700 | 1 | _ | |a Hoffmann, Bernd |0 P:(DE-Juel1)128817 |b 7 |
700 | 1 | _ | |a Merkel, R. |0 P:(DE-Juel1)128833 |b 8 |
700 | 1 | _ | |a Stevens, M. M. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Sun, S. X. |0 0000-0002-9077-7088 |b 10 |
700 | 1 | _ | |a Gorelik, J. |0 0000-0003-1148-9158 |b 11 |
700 | 1 | _ | |a Braga, Vania M. M. |0 0000-0003-0546-7163 |b 12 |
773 | _ | _ | |a 10.1038/s41467-022-32102-9 |g Vol. 13, no. 1, p. 4832 |0 PERI:(DE-600)2553671-0 |n 1 |p 4832 |t Nature Communications |v 13 |y 2022 |x 2041-1723 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/909777/files/s41467-022-32102-9.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:909777 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 0000-0003-2942-0079 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 0000-0002-5461-0344 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)171121 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)188726 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128817 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)128833 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 0000-0003-1148-9158 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 0000-0003-0546-7163 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Systemmedizin und Herz-Kreislauf-Erkrankungen |1 G:(DE-HGF)POF4-330 |0 G:(DE-HGF)POF4-333 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Integrative Biomedizin |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5243 |x 2 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-2-20200312 |k IBI-2 |l Mechanobiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBI-2-20200312 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|