000909782 001__ 909782
000909782 005__ 20250129092357.0
000909782 0247_ $$2doi$$a10.1109/TED.2021.3139563
000909782 0247_ $$2ISSN$$a0018-9383
000909782 0247_ $$2ISSN$$a0096-2430
000909782 0247_ $$2ISSN$$a0197-6370
000909782 0247_ $$2ISSN$$a1557-9646
000909782 0247_ $$2ISSN$$a2379-8653
000909782 0247_ $$2ISSN$$a2379-8661
000909782 0247_ $$2Handle$$a2128/31963
000909782 0247_ $$2WOS$$aWOS:000742676600001
000909782 037__ $$aFZJ-2022-03412
000909782 082__ $$a620
000909782 1001_ $$0P:(DE-Juel1)174165$$aArtanov, Anton A.$$b0$$eCorresponding author
000909782 245__ $$aSelf-Heating Effect in a 65 nm MOSFET at Cryogenic Temperatures
000909782 260__ $$aNew York, NY$$bIEEE$$c2022
000909782 3367_ $$2DRIVER$$aarticle
000909782 3367_ $$2DataCite$$aOutput Types/Journal article
000909782 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1664452445_3940
000909782 3367_ $$2BibTeX$$aARTICLE
000909782 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909782 3367_ $$00$$2EndNote$$aJournal Article
000909782 520__ $$aWe characterized the thermal behavior of a 65 nm bulk CMOS transistor, by measuring the self-heating effect (SHE) as a function of bias condition. We demonstrated that at a base temperature of 6.5 K the channel temperature of the transistor can increase up to several tens of kelvins due to power dissipation. The thermal behavior of the transistor is determined not only by the thermal response of the transistor itself but also by the thermal properties of the surroundings, i.e., source, drain, bulk, and gate interfaces, metal contacts, and vias. On top of it, the thermal response is bias-dependent through bias dependence of power and self-heating. This information becomes relevant for proper design of integrated circuits for quantum computing or other cryogenic applications, where the circuitry requires to be operated at a stable cryogenic temperature.
000909782 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000909782 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909782 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000909782 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000909782 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000909782 7001_ $$0P:(DE-HGF)0$$aGutierrez-D, Edmundo A.$$b1
000909782 7001_ $$0P:(DE-Juel1)177765$$aCabrera Galicia, Alfonso Rafael$$b2
000909782 7001_ $$0P:(DE-Juel1)156521$$aKruth, Andre$$b3
000909782 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, Carsten$$b4
000909782 7001_ $$0P:(DE-HGF)0$$aDurini, Daniel$$b5
000909782 7001_ $$0P:(DE-HGF)0$$aMendez-V, Jairo$$b6
000909782 7001_ $$0P:(DE-Juel1)142562$$aVan Waasen, Stefan$$b7
000909782 773__ $$0PERI:(DE-600)2028088-9$$a10.1109/TED.2021.3139563$$gVol. 69, no. 3, p. 900 - 904$$n3$$p900 - 904$$tIEEE transactions on electron devices$$v69$$x0018-9383$$y2022
000909782 8564_ $$uhttps://juser.fz-juelich.de/record/909782/files/Self-Heating%20Effect%20in%20a%2065%20nm%20MOSFET%20at%20Cryogenic%20Temperatures%20%28Post-Print%29.pdf$$yOpenAccess
000909782 8564_ $$uhttps://juser.fz-juelich.de/record/909782/files/Self-Heating_Effect_in_a_65_nm_MOSFET_at_Cryogenic_Temperatures-1.pdf$$yRestricted
000909782 909CO $$ooai:juser.fz-juelich.de:909782$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174165$$aForschungszentrum Jülich$$b0$$kFZJ
000909782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177765$$aForschungszentrum Jülich$$b2$$kFZJ
000909782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b3$$kFZJ
000909782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b4$$kFZJ
000909782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b7$$kFZJ
000909782 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000909782 9141_ $$y2022
000909782 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000909782 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-29
000909782 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000909782 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909782 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000909782 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-11
000909782 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000909782 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T ELECTRON DEV : 2021$$d2022-11-11
000909782 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000909782 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000909782 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000909782 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000909782 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000909782 920__ $$lyes
000909782 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000909782 9801_ $$aFullTexts
000909782 980__ $$ajournal
000909782 980__ $$aVDB
000909782 980__ $$aUNRESTRICTED
000909782 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000909782 981__ $$aI:(DE-Juel1)PGI-4-20110106