001     909782
005     20250129092357.0
024 7 _ |a 10.1109/TED.2021.3139563
|2 doi
024 7 _ |a 0018-9383
|2 ISSN
024 7 _ |a 0096-2430
|2 ISSN
024 7 _ |a 0197-6370
|2 ISSN
024 7 _ |a 1557-9646
|2 ISSN
024 7 _ |a 2379-8653
|2 ISSN
024 7 _ |a 2379-8661
|2 ISSN
024 7 _ |a 2128/31963
|2 Handle
024 7 _ |a WOS:000742676600001
|2 WOS
037 _ _ |a FZJ-2022-03412
082 _ _ |a 620
100 1 _ |a Artanov, Anton A.
|0 P:(DE-Juel1)174165
|b 0
|e Corresponding author
245 _ _ |a Self-Heating Effect in a 65 nm MOSFET at Cryogenic Temperatures
260 _ _ |a New York, NY
|c 2022
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1664452445_3940
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We characterized the thermal behavior of a 65 nm bulk CMOS transistor, by measuring the self-heating effect (SHE) as a function of bias condition. We demonstrated that at a base temperature of 6.5 K the channel temperature of the transistor can increase up to several tens of kelvins due to power dissipation. The thermal behavior of the transistor is determined not only by the thermal response of the transistor itself but also by the thermal properties of the surroundings, i.e., source, drain, bulk, and gate interfaces, metal contacts, and vias. On top of it, the thermal response is bias-dependent through bias dependence of power and self-heating. This information becomes relevant for proper design of integrated circuits for quantum computing or other cryogenic applications, where the circuitry requires to be operated at a stable cryogenic temperature.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 1
650 1 7 |a Engineering, Industrial Materials and Processing
|0 V:(DE-MLZ)GC-1601-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Gutierrez-D, Edmundo A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cabrera Galicia, Alfonso Rafael
|0 P:(DE-Juel1)177765
|b 2
700 1 _ |a Kruth, Andre
|0 P:(DE-Juel1)156521
|b 3
700 1 _ |a Degenhardt, Carsten
|0 P:(DE-Juel1)167475
|b 4
700 1 _ |a Durini, Daniel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mendez-V, Jairo
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 7
773 _ _ |a 10.1109/TED.2021.3139563
|g Vol. 69, no. 3, p. 900 - 904
|0 PERI:(DE-600)2028088-9
|n 3
|p 900 - 904
|t IEEE transactions on electron devices
|v 69
|y 2022
|x 0018-9383
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/909782/files/Self-Heating%20Effect%20in%20a%2065%20nm%20MOSFET%20at%20Cryogenic%20Temperatures%20%28Post-Print%29.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/909782/files/Self-Heating_Effect_in_a_65_nm_MOSFET_at_Cryogenic_Temperatures-1.pdf
909 C O |o oai:juser.fz-juelich.de:909782
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177765
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156521
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T ELECTRON DEV : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21