001     909835
005     20230222201808.0
024 7 _ |a 10.1103/PhysRevMaterials.6.095002
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 2128/31878
|2 Handle
024 7 _ |a WOS:000874905300002
|2 WOS
037 _ _ |a FZJ-2022-03453
082 _ _ |a 530
100 1 _ |a Gutsche, Alexander
|0 P:(DE-Juel1)173699
|b 0
|e Corresponding author
245 _ _ |a Disentangling ionic and electronic contributions to the switching dynamics of memristive Pr 0.7 Ca 0.3 MnO 3 / Al devices by employing a two-resistor model
260 _ _ |a College Park, MD
|c 2022
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677068365_20616
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Area-dependent memristive devices such as Al/Pr0.7Ca0.3MnO3 (PCMO) stacks are highly interesting candidates for synapses in neuromorphic circuits due to their gradual switching properties, their reduced variability and the possibility to tune the resistance with the device area. However, due to the complexity of the different processes taking place, the electronic and ionic transport in theses devices is so far only poorly understood and physical compact models to simulate their behavior are missing so far. We developed a mathematical description of the dynamics of theses devices based on a simple two-resistor model that reproduces the device behavior very well. Based on x-ray photoelectron spectroscopy and impedance spectroscopy we assign the two resistors to the AlOx layer and a depletion zone at the Pr0.7Ca0.3MnO3 layer, respectively. We assign the parameters used within the mathematical model to physical parameters and make use of them in order to explain the dynamics of the switching processes during the SET and RESET process in different voltage regimes. For both poly- and single crystalline PCMO thin film devices, oxygen migration between the AlOx and the PCMO depletion zone is responsible for the resistance change. However, the dynamics differ significantly due to the increased mobility of oxygen vacancies with increasing defect density in the case of the polycrystalline samples. Moreover, we observe volatile subloops in our current-voltage curves, which vanish within millisecond time scale. Based on our two-resistor model and the band diagram derived from spectroscopic measurements, we assign these subloops to the injection of electrons into traps within the AlOx barrier.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF-16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 1
536 _ _ |a BMBF-16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 2
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|f Advanced Computing Architectures
|x 3
536 _ _ |a BMBF-03ZU1106AB - NeuroSys: "Memristor Crossbar Architekturen (Projekt A) - B" (BMBF-03ZU1106AB)
|0 G:(DE-Juel1)BMBF-03ZU1106AB
|c BMBF-03ZU1106AB
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hambsch, Sebastian
|0 P:(DE-Juel1)174430
|b 1
700 1 _ |a Branca, Nuno Casa
|0 0000-0001-6650-6408
|b 2
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 3
700 1 _ |a Scholz, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Knoch, Joachim
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1103/PhysRevMaterials.6.095002
|g Vol. 6, no. 9, p. 095002
|0 PERI:(DE-600)2898355-5
|n 9
|p 095002
|t Physical review materials
|v 6
|y 2022
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/909835/files/Paper_Widerstandsmodell_Paper-1.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/909835/files/PhysRevMaterials.6.095002.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909835
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2022
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-25
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21