Contribution submission to the conference Regensburg 2022 Topological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn₅Ge₃ — •Manuel dos Santos Dias^{1,2}, Nikolaos Biniskos³, Flaviano José dos Santos⁴, Karin Schmalzl⁵, Jörg Persson⁶, Nicola Marzari⁴, Stefan Blügel², Thomas Brückel⁶, and Samir Lounis^{2,1} — ¹Faculty of Physics, University of Duisburg-Essen and CENIDE, Duisburg, DE — ²Peter Grünberg Institut and Institute for Advanced Simulation, FZ Jülich & JARA, Jülich, DE — ³FZ Jülich, Jülich Centre for Neutron Science at MLZ, Garching, DE — ⁴Theory and Simulation of Materials and National Centre for Computational Design and Discovery of Novel Materials, EPFL, Lausanne, CH — ⁵FZ Jülich, Jülich Centre for Neutron Science at ILL, Grenoble, FR — ⁶FZ Jülich, Jülich Centre for Neutron Science and Peter Grünberg Institut, JARA-FIT, Jülich, DE The Berry phase of electrons and magnons can lead to various unique transport effects and protected edge states of topological nature. Here, we show theoretically and via inelastic neutron scattering experiments that bulk ferromagnetic Mn_5Ge_3 hosts topological Dirac magnons. Although inversion symmetry prohibits a net Dzyaloshinskii-Moriya interaction in the unit cell, it is locally allowed and is responsible for the gap opening in the magnon spectra. This gap is predicted and experimentally verified to close by rotating the magnetization from being parallel to being perpendicular to the c-axis. The tunability of Mn_5Ge_3 by chemical doping or by thin film nanostructuring makes it an exciting new platform to explore and design topological magnons. Part: MA Type: Vortrag; Talk Topic: Magnonics Email: m.dos.santos.dias@fz-juelich.de