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INTRODUCTION

Major subtypes of inhibitory interneurons
in the neocortex, PV, SOM, and VIP cells,
have distinct properties in

Cell electrophysiology
Connectivity
Synaptic short-term plasticity (STP)

We established a microcircuit model for
the computational study of their roles in
network dynamics and sensory signal
processing

Interneurons and their projections in L2/3 of neocortex
PV: parvalbumin-expressing cell
SOM: somatostatin-expressing cell
VIP: vasoactive intestinal peptide-expressing cell
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MODEL OVERVIEW

Adapted from Potjans & Diesmann
(2014)
Uses LIF neurons (N=6448) with
current-based synapses
Simulates a mouse barrel column
(200×300×1026 µm)

(Lefort et al., 2009; Lee et al., 2010)

Member of the Helmholtz Association September 21, 2022 Slide 4



MODEL PARAMETERS

Neuronal and synaptic parameters

(Neske et al., 2015; Watson et al., 2008; Feldmeyer et al., 2002; Ma et al., 2012; Jouhanneau et al., 2018; Bruno &
Sakmann, 2006)
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MODEL PARAMETERS

Synaptic weights (postsynaptic potentials) Connection probability
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MODEL PARAMETERS

Fitting of synaptic STP (Tsodyks et al., 2000)

Fitted STP parameters
U: Release probability
F: Facilitation time constant
D: Depression time constant
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MODEL PARAMETERS

Transient thalamic input (Eth)
Excitatory cells (N=200), time
courses and weights
(0.49±0.13 mV) according to in
vivo data

Fitted time course of in vivo thalamic firings
induced by whisker touch (Yu et al., 2019)

Background input (Ebg) of [E, PV, SOM, VIP] = [5000,
6600, 2500(2300), 3400] spikes/s, weight = 0.5 mV,
Poissonian
Synaptic weights of STP model are scaled to
optimize steady state weights
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GROUND STATE
Ground state, model vs. in vivo data (Yu et al., 2019; Maksimov et al., 2018)

Static synapse

STP
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CELL-TYPE-SPECIFIC STIMULATION (L2/3)

PV, SOM: inhibitory
VIP: disinhibitory

rnorm: normalized population firing rate
rstim: firing rate of stimulation

Shaded: rbg of [E, PV] = [4900∼5100,
6500∼6700]

n of instantiation = 10
n of repeat = 10

Static synapse

STP
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CELL-TYPE-SPECIFIC STIMULATION (L4)

PV: inhibitory
SOM: disinhibitory

Static synapse

STP
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RESPONSES TO THALAMIC INPUT
Grand average and layer-specific PSTH, model vs. in vivo data (Yu et al., 2019)

Static synapse STP
In vivo
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RESPONSES TO THALAMIC INPUT

Spike latencies of excitatory neurons, model vs. in vivo data (Constantinople & Bruno, 2013)

Static synapse STP In vivo
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DISCUSSION

The model reproduces experimental observations of inhibitory and disinhibitory functions of
interneurons, as well as sensory responses of barrel cortex
It can be used to explore layer-specific interneuron functions regarding cell electrophysiology,
connectivity, STP, and sensory signal processing
Outlook

Mechanistic analysis (mean-field analysis with STP)
Neurotransmitter (ACh) modeling
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