A CORTICAL MICROCIRCUIT MODEL FOR STUDYING THE ROLES OF INTERNEURON SUBTYPES

September 21, 2022 | Han-Jia Jiang, Sacha J. van Albada | Jülich Research Centre

Introduction

Model parameters

Simulation Results

INTRODUCTION

- Major subtypes of inhibitory interneurons in the neocortex, PV, SOM, and VIP cells, have distinct properties in
 - Cell electrophysiology
 - Connectivity
 - Synaptic short-term plasticity (STP)
- We established a microcircuit model for the computational study of their roles in network dynamics and sensory signal processing

Interneurons and their projections in L2/3 of neocortex

PV: parvalbumin-expressing cell SOM: somatostatin-expressing cell

VIP: vasoactive intestinal peptide-expressing cell

Introduction

Model parameters

Simulation Results

MODEL OVERVIEW

- Adapted from Potjans & Diesmann (2014)
- Uses LIF neurons (N=6448) with current-based synapses
- Simulates a mouse barrel column (200×300×1026 μm)

	\mathbf{E}	PV	SOM	VIP
L2/3	1691	90	74	85
L4	1656	85	48	-
L5	1095	109	105	-
L6	1288	56	66	-
(Lefort et al., 2009; Lee et al., 2010)				

Slide 4

Neuronal and synaptic parameters

Parameter	Definition	L2/3, L4 E	L2/3, L4 PV	L2/3, L4 SOM	VIP	L5, L6 E	L5, L6 PV	L5, L6 SOM
$ au_m$	membrane time constant (ms)	5.16	2.95	11.22	10.37	5.94	3.8	11.13
C_m	membrane capacity (pF)	229.8	93.9	123.3	86.5	269.2	81.0	146.8
V_{rest}	resting membrane potential (mV)	-67.4	-66.4	-59.9	-65.7	-63.2	-67.1	-63.2
V_{th}	firing threshold (mV)	-41.5	-41.6	-41.8	-43.7	-45.2	-42.3	-48.1

Parameter	Definition	Value		
$ au_{syn,E}$	excitatory synaptic time constant	2.0 ms		
$ au_{syn,I}$	inhibitory synaptic time constant	4.0 ms		
d_E	synaptic delays of recurrent excitatory connections	$1.36 \pm 0.51 \text{ ms}$		
d_I	synaptic delays of recurrent inhibitory connections	$1.43{\pm}1.09~{\rm ms}$		
d_{th}	synaptic delays of thalamic inputs	$1.72\pm0.73~{\rm ms}$		

(Neske et al., 2015; Watson et al., 2008; Feldmeyer et al., 2002; Ma et al., 2012; Jouhanneau et al., 2018; Bruno & Sakmann, 2006)

Member of the Helmholtz Association September 21, 2022 Slide 5

Synaptic weights (postsynaptic potentials)

Connection probability

Member of the Helmholtz Association September 21, 2022 Slide 6

■ Fitting of synaptic STP (Tsodyks et al., 2000)

Fitted STP parameters

U: Release probability

F: Facilitation time constant

D: Depression time constant

- Transient thalamic input (E_{th})
 - Excitatory cells (N=200), time courses and weights (0.49±0.13 mV) according to in vivo data

Fitted time course of *in vivo* thalamic firings induced by whisker touch (Yu et al., 2019)

Member of the Helmholtz Association

- Background input (E_{bg}) of [E, PV, SOM, VIP] = [5000, 6600, 2500(2300), 3400] spikes/s, weight = 0.5 mV, Poissonian
- Synaptic weights of STP model are scaled to optimize steady state weights

Introduction

Model parameters

Simulation Results

GROUND STATE

■ Ground state, model vs. in vivo data (Yu et al., 2019; Maksimov et al., 2018)

CELL-TYPE-SPECIFIC STIMULATION (L2/3)

PV, SOM: inhibitory

VIP: disinhibitory

r_{norm}: normalized population firing rate

 r_{stim} : firing rate of stimulation

Shaded: r_{bg} of [E, PV] = [4900 \sim 5100,

6500~6700]

n of instantiation = 10 n of repeat = 10

Static synapse

STP

CELL-TYPE-SPECIFIC STIMULATION (L4)

PV: inhibitory

SOM: disinhibitory

Static synapse

STP

RESPONSES TO THALAMIC INPUT

• Grand average and layer-specific PSTH, model vs. in vivo data (Yu et al., 2019)

RESPONSES TO THALAMIC INPUT

■ Spike latencies of **excitatory** neurons, model vs. *in vivo* data (Constantinople & Bruno, 2013)

Slide 14

Introduction

Model parameters

Simulation Results

DISCUSSION

- The model reproduces experimental observations of inhibitory and disinhibitory functions of interneurons, as well as sensory responses of barrel cortex
- It can be used to explore layer-specific interneuron functions regarding cell electrophysiology, connectivity, STP, and sensory signal processing

Slide 16

- Outlook
 - Mechanistic analysis (mean-field analysis with STP)
 - Neurotransmitter (ACh) modeling

REFERENCE

- Bruno, R. M., & Sakmann, B. (2006). Cortex is driven by weak but synchronously active thalamocortical synapses. *Science 312*, 1622–1627. Constantinople, C. M., & Bruno, R. M. (2013). Deep cortical layers are activated directly by thalamus. *Science 340*(6140), 1591–1594.
- Feldmeyer, D., Lübke, J., Silver, R. A., & Sakmann, B. (2002). Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. *J. Physiol.* 538(3), 803–822.
- Jouhanneau, J.-S., Kremkow, J., & Poulet, J. F. (2018). Single synaptic inputs drive high-precision action potentials in parvalbumin expressing gaba-ergic cortical neurons in vivo. *Nat. Commun. 9*(1), 1–11.
- Lee, S., Hjerling-Leffler, J., Zagha, E., Fishell, G., & Rudy, B. (2010). The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. *J. Neurosci.* 30(50), 16796–16808.
- Lefort, S., Tomm, C., Sarria, J.-C. F., & Petersen, C. C. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. *Neuron* 61(2), 301–316.
- Ma, Y., Hu, H., & Agmon, A. (2012). Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype. *J. Neurosci.* 32(3), 983–988.
- Maksimov, A., Diesmann, M., & van Albada, S. J. (2018). Criteria on balance, stability, and excitability in cortical networks for constraining computational models. Front. Comput. Neurosci. 12, 44.
- Neske, G. T., Patrick, S. L., & Connors, B. W. (2015). Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex. J. Neurosci. 35(3), 1089–1105.
- Potjans, T. C., & Diesmann, M. (2014). The cell-type specific cortical microcircuit: Relating structure and activity in a full-scale spiking network model. *Cereb. Cortex* 24(3), 785–806.
- Tsodyks, M., Uziel, A., & Markram, H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. *J. Neurosci. 20*. RC1 (1–5).
- Watson, B. O., MacLean, J. N., & Yuste, R. (2008). Up states protect ongoing cortical activity from thalamic inputs. *PLOSONE* 3(12), e3971.
- Yu, J., Hu, H., Agmon, A., & Svoboda, K. (2019). Recruitment of gabaergic interneurons in the barrel cortex during active tactile behavior. Neuron 104(2), 412–427.

Member of the Helmholtz Association September 21, 2022 Slide 17