000909857 001__ 909857
000909857 005__ 20240610121155.0
000909857 0247_ $$2doi$$a10.1039/D2SM00622G
000909857 0247_ $$2ISSN$$a1744-683X
000909857 0247_ $$2ISSN$$a1744-6848
000909857 0247_ $$2Handle$$a2128/31893
000909857 0247_ $$2pmid$$a36043635
000909857 0247_ $$2WOS$$aWOS:000847743500001
000909857 037__ $$aFZJ-2022-03470
000909857 082__ $$a530
000909857 1001_ $$0P:(DE-Juel1)186024$$aIyer, Priyanka$$b0$$ufzj
000909857 245__ $$aNon-equilibrium shapes and dynamics of active vesicles
000909857 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2022
000909857 3367_ $$2DRIVER$$aarticle
000909857 3367_ $$2DataCite$$aOutput Types/Journal article
000909857 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663941171_350
000909857 3367_ $$2BibTeX$$aARTICLE
000909857 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909857 3367_ $$00$$2EndNote$$aJournal Article
000909857 520__ $$aActive vesicles, constructed through the confinement of self-propelled particles (SPPs) inside a lipid membrane shell, exhibit a large variety of non-equilibrium shapes, ranging from the formation of local tethers and dendritic conformations, to prolate and bola-like structures. To better understand the behavior of active vesicles, we perform simulations of membranes modelled as dynamically triangulated surfaces enclosing active Brownian particles. A systematic analysis of membrane deformations and SPP clustering, as a function of SPP activity and volume fraction inside the vesicle is carried out. Distributions of membrane local curvature, and the clustering and mobility of SPPs obtained from simulations of active vesicles are analysed. There exists a feedback mechanism between the enhancement of membrane curvature, the formation of clusters of active particles, and local or global changes in vesicle shape. The emergence of active tension due to the activity of SPPs can well be captured by the Young–Laplace equation. Furthermore, a simple numerical method for tether detection is presented and used to determine correlations between the number of tethers, their length, and local curvature. We also provide several geometrical arguments to explain different tether characteristics for various conditions. These results contribute to the future development of steerable active vesicles or soft micro-robots whose behaviour can be controlled and used for potential applications.
000909857 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000909857 588__ $$aDataset connected to DataCite
000909857 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1
000909857 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b2$$eCorresponding author
000909857 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D2SM00622G$$gVol. 18, no. 36, p. 6868 - 6881$$n36$$p6868 - 6881$$tSoft matter$$v18$$x1744-683X$$y2022
000909857 8564_ $$uhttps://juser.fz-juelich.de/record/909857/files/d2sm00622g.pdf$$yOpenAccess
000909857 8767_ $$d2022-12-27$$eHybrid-OA$$jPublish and Read$$zRSC
000909857 909CO $$ooai:juser.fz-juelich.de:909857$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$qOpenAPC
000909857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186024$$aForschungszentrum Jülich$$b0$$kFZJ
000909857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b1$$kFZJ
000909857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b2$$kFZJ
000909857 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000909857 9141_ $$y2022
000909857 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000909857 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000909857 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909857 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000909857 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-13$$wger
000909857 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000909857 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000909857 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000909857 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000909857 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-13
000909857 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2021$$d2022-11-13
000909857 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-13
000909857 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909857 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909857 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
000909857 920__ $$lyes
000909857 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000909857 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1
000909857 9801_ $$aFullTexts
000909857 980__ $$ajournal
000909857 980__ $$aVDB
000909857 980__ $$aUNRESTRICTED
000909857 980__ $$aI:(DE-Juel1)IBI-5-20200312
000909857 980__ $$aAPC
000909857 980__ $$aI:(DE-Juel1)IAS-2-20090406
000909857 981__ $$aI:(DE-Juel1)IAS-2-20090406