000909857 001__ 909857 000909857 005__ 20240610121155.0 000909857 0247_ $$2doi$$a10.1039/D2SM00622G 000909857 0247_ $$2ISSN$$a1744-683X 000909857 0247_ $$2ISSN$$a1744-6848 000909857 0247_ $$2Handle$$a2128/31893 000909857 0247_ $$2pmid$$a36043635 000909857 0247_ $$2WOS$$aWOS:000847743500001 000909857 037__ $$aFZJ-2022-03470 000909857 082__ $$a530 000909857 1001_ $$0P:(DE-Juel1)186024$$aIyer, Priyanka$$b0$$ufzj 000909857 245__ $$aNon-equilibrium shapes and dynamics of active vesicles 000909857 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2022 000909857 3367_ $$2DRIVER$$aarticle 000909857 3367_ $$2DataCite$$aOutput Types/Journal article 000909857 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663941171_350 000909857 3367_ $$2BibTeX$$aARTICLE 000909857 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000909857 3367_ $$00$$2EndNote$$aJournal Article 000909857 520__ $$aActive vesicles, constructed through the confinement of self-propelled particles (SPPs) inside a lipid membrane shell, exhibit a large variety of non-equilibrium shapes, ranging from the formation of local tethers and dendritic conformations, to prolate and bola-like structures. To better understand the behavior of active vesicles, we perform simulations of membranes modelled as dynamically triangulated surfaces enclosing active Brownian particles. A systematic analysis of membrane deformations and SPP clustering, as a function of SPP activity and volume fraction inside the vesicle is carried out. Distributions of membrane local curvature, and the clustering and mobility of SPPs obtained from simulations of active vesicles are analysed. There exists a feedback mechanism between the enhancement of membrane curvature, the formation of clusters of active particles, and local or global changes in vesicle shape. The emergence of active tension due to the activity of SPPs can well be captured by the Young–Laplace equation. Furthermore, a simple numerical method for tether detection is presented and used to determine correlations between the number of tethers, their length, and local curvature. We also provide several geometrical arguments to explain different tether characteristics for various conditions. These results contribute to the future development of steerable active vesicles or soft micro-robots whose behaviour can be controlled and used for potential applications. 000909857 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0 000909857 588__ $$aDataset connected to DataCite 000909857 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1 000909857 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b2$$eCorresponding author 000909857 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D2SM00622G$$gVol. 18, no. 36, p. 6868 - 6881$$n36$$p6868 - 6881$$tSoft matter$$v18$$x1744-683X$$y2022 000909857 8564_ $$uhttps://juser.fz-juelich.de/record/909857/files/d2sm00622g.pdf$$yOpenAccess 000909857 8767_ $$d2022-12-27$$eHybrid-OA$$jPublish and Read$$zRSC 000909857 909CO $$ooai:juser.fz-juelich.de:909857$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$qOpenAPC 000909857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186024$$aForschungszentrum Jülich$$b0$$kFZJ 000909857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b1$$kFZJ 000909857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b2$$kFZJ 000909857 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 000909857 9141_ $$y2022 000909857 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000909857 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30 000909857 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000909857 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30 000909857 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-13$$wger 000909857 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13 000909857 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13 000909857 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13 000909857 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13 000909857 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-13 000909857 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2021$$d2022-11-13 000909857 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-13 000909857 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000909857 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000909857 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021 000909857 920__ $$lyes 000909857 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0 000909857 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1 000909857 9801_ $$aFullTexts 000909857 980__ $$ajournal 000909857 980__ $$aVDB 000909857 980__ $$aUNRESTRICTED 000909857 980__ $$aI:(DE-Juel1)IBI-5-20200312 000909857 980__ $$aAPC 000909857 980__ $$aI:(DE-Juel1)IAS-2-20090406 000909857 981__ $$aI:(DE-Juel1)IAS-2-20090406