000909866 001__ 909866
000909866 005__ 20240709082022.0
000909866 037__ $$aFZJ-2022-03478
000909866 041__ $$aEnglish
000909866 1001_ $$0P:(DE-Juel1)185606$$aQuentmeier, Maximilian$$b0$$eCorresponding author
000909866 1112_ $$aElectrochemistry 2022$$cBerlin$$d2022-09-27 - 2022-09-30$$wGermany
000909866 245__ $$aCO2-to-CO GDE-Flowcell    From Lab-Test-Cell to Stack
000909866 260__ $$c2022
000909866 3367_ $$033$$2EndNote$$aConference Paper
000909866 3367_ $$2BibTeX$$aINPROCEEDINGS
000909866 3367_ $$2DRIVER$$aconferenceObject
000909866 3367_ $$2ORCID$$aCONFERENCE_POSTER
000909866 3367_ $$2DataCite$$aOutput Types/Conference Poster
000909866 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1668698324_20010$$xOther
000909866 520__ $$aWhile energy efficiency and conversion rates are not economically competitive yet,aqueous CO2-to-CO electrolysis is a promising approach for closing the carbon cycleand defossilize industrial processes [1]. Ag is already established as a stable andselective catalyst for this process, focus is therefore on raising the processperformance to a profitable level. A significant share of attention is drawn towardscontinuous flowcells operating with gas diffusion electrodes (GDE) [2]. This work isspecifically addressing the optimization of media flow and distribution in flow chambers.The internal media gaps are filled with different structures and their effects on theperformance are investigated. In the gas chamber the feed gas distribution over theGDE was controlled by implementing structures with various gas path architectures.The effect of these structures on the cell voltage and the conversion of CO2 to CO wasinvestigated at 100 mA/cm² in dependence of the CO2 feed gas supply. Aside of othereffects, an increase of the CO2 to CO conversion rate could be generated for reducedCO2 supply. Next to the gas chamber, the catholyte chamber was filled with a spacer,influencing the cell voltage and enhancing the process stability. The modifications inthe media gaps enabled in combination full force closure and provided an ionic andelectric contact over the full active cell area. Thus, a stackable flowcell architecture wasdeveloped, demonstrated in experiments with a two cell short stack.Literature:[1] CO2 Electrolysis to CO and O2 at High Selectivity, Stability and Efficiency UsingSustainion Membranes , Zengcai Liu, Journal of The Electrochemical Society, 165 (15)J3371-J3377, 2018[2] Continuous-flow electroreduction of carbon dioxide, B. Endrodia, Progress in Energyand Combustion Science 62, 2017
000909866 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000909866 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000909866 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x2
000909866 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000909866 7001_ $$0P:(DE-Juel1)179220$$aSchmid, Bernhard$$b1
000909866 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
000909866 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3
000909866 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4
000909866 909CO $$ooai:juser.fz-juelich.de:909866$$pVDB
000909866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185606$$aForschungszentrum Jülich$$b0$$kFZJ
000909866 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)185606$$aRWTH Aachen$$b0$$kRWTH
000909866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179220$$aForschungszentrum Jülich$$b1$$kFZJ
000909866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
000909866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
000909866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
000909866 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
000909866 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000909866 9141_ $$y2022
000909866 920__ $$lyes
000909866 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000909866 980__ $$aposter
000909866 980__ $$aVDB
000909866 980__ $$aI:(DE-Juel1)IEK-9-20110218
000909866 980__ $$aUNRESTRICTED
000909866 981__ $$aI:(DE-Juel1)IET-1-20110218