000909883 001__ 909883
000909883 005__ 20240708133800.0
000909883 037__ $$aFZJ-2022-03491
000909883 041__ $$aEnglish
000909883 1001_ $$0P:(DE-HGF)0$$aTaylor, Robin$$b0$$eCorresponding author
000909883 1112_ $$aInternational Solvent Extraction Conference ISEC 2022$$cGothenburg$$d2022-09-26 - 2022-10-01$$gISEC 2022$$wSweden
000909883 245__ $$aDevelopment of Solvent Extraction Processes for Grouped Separation of Actinides in Europe
000909883 260__ $$c2022
000909883 3367_ $$033$$2EndNote$$aConference Paper
000909883 3367_ $$2DataCite$$aOther
000909883 3367_ $$2BibTeX$$aINPROCEEDINGS
000909883 3367_ $$2DRIVER$$aconferenceObject
000909883 3367_ $$2ORCID$$aLECTURE_SPEECH
000909883 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1664340125_30912$$xOther
000909883 520__ $$aIt is clear that closed nuclear fuel cycles with the recycling of spent nuclear fuels can enhance the sustainabilityof nuclear energy (Taylor et al. 2022a, 2022b). In Europe two strands of research have been followed: (a) theheterogeneous recycling of (U,Pu) in the PUREX process followed by a minor actinide separation process(Geist et al., 2021) and (b) the homogeneous recycling of actinides in a grouped actinide extraction (GANEX)process. The GANEX option has some advantages since it is based on fully decomposable (“CHON”) solventsand produces separate uranium and transuranic products – this adds a proliferation barrier due to theplutonium being mixed with minor actinides.The first GANEX cycle (GANEX-1) to separate the bulk uranium uses a monoamide as a selective extractant.The second cycle is more complex and a number of concepts have been developed in Europe over the last15+ years, including within European collaborative projects (ACSEPT, SACSESS, GENIORS). The GANEX-2cycle requires innovative solvent formulations capable of co-extracting plutonium and the minor actinides(including neptunium) as well as separating the trivalent minor actinides from the lanthanides. Processes havebeen developed and tested on the lab scale, including hot tests with spent fuel (Lyseid Authen et al., 2022).The various solvent extraction processes are briefly introduced, the most suitable choices are pointed out, andthe process schemes are compared to one another.Geist, A.; Adnet, J.-M.; Bourg, S.; Ekberg, C.; Galán, H.; Guilbaud, P.; Miguirditchian, M.; Modolo, G.; Rhodes,C.; Taylor, R., An overview of solvent extraction processes developed in Europe for advanced nuclear fuelrecycling, part 1-Heterogeneous recycling.Separation Science and Technology,56, 2021, 1866–1881.https://doi.org/10.1080/01496395.2020.1795680Lyseid Authen, T.; Adnet, J.-M.; Bourg, S.; Carrott, M.; Ekberg, C.; Galán, H.; Geist, A.; Guilbaud, P.;Miguirditchian, M.; Modolo, G.; Rhodes, C.; Wilden, A.; Taylor, R., An overview of solvent extraction processesdeveloped in Europe for advanced nuclear fuel recycling, Part 2 — homogeneous recycling,SeparationScience and Technology2021, 1-21. https://doi.org/10.1080/01496395.2021.2001531.Taylor, R.; Bodel, W.; Stamford, L.; Butler, G., A review of environmental and economic implications of closingthe nuclear fuel cycle. Part 1: Wastes and environmental impacts,Energies2022, 15, 1433.https://doi.org/10.3390/en15041433.Taylor, R.; Bodel, W.; Butler, G., A Review of Environmental and Economic Implications of Closing the NuclearFuel Cycle-Part Two: Economic Impacts,Energies, 15, 2022, 2472. https://doi:10.3390/en15072472.
000909883 536__ $$0G:(DE-HGF)POF4-1412$$a1412 - Predisposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0
000909883 536__ $$0G:(EU-Grant)945077$$aPATRICIA - Partitioning And Transmuter Research Initiative in a Collaborative Innovation Action (945077)$$c945077$$fNFRP-2019-2020$$x1
000909883 536__ $$0G:(EU-Grant)755171$$aGENIORS - GEN IV Integrated Oxide fuels recycling strategies (755171)$$c755171$$fNFRP-2016-2017-1$$x2
000909883 7001_ $$0P:(DE-HGF)0$$aBourg, Stéphane$$b1
000909883 7001_ $$0P:(DE-HGF)0$$aEkberg, Christian$$b2
000909883 7001_ $$0P:(DE-HGF)0$$aGalán, Hitos$$b3
000909883 7001_ $$0P:(DE-HGF)0$$aGeist, Andreas$$b4
000909883 7001_ $$0P:(DE-Juel1)130383$$aModolo, Giuseppe$$b5$$ufzj
000909883 909CO $$ooai:juser.fz-juelich.de:909883$$pec_fundedresources$$pVDB$$popenaire
000909883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130383$$aForschungszentrum Jülich$$b5$$kFZJ
000909883 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1412$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0
000909883 9141_ $$y2022
000909883 920__ $$lyes
000909883 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000909883 980__ $$aconf
000909883 980__ $$aVDB
000909883 980__ $$aI:(DE-Juel1)IEK-6-20101013
000909883 980__ $$aUNRESTRICTED
000909883 981__ $$aI:(DE-Juel1)IFN-2-20101013