001     909883
005     20240708133800.0
037 _ _ |a FZJ-2022-03491
041 _ _ |a English
100 1 _ |a Taylor, Robin
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a International Solvent Extraction Conference ISEC 2022
|g ISEC 2022
|c Gothenburg
|d 2022-09-26 - 2022-10-01
|w Sweden
245 _ _ |a Development of Solvent Extraction Processes for Grouped Separation of Actinides in Europe
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1664340125_30912
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a It is clear that closed nuclear fuel cycles with the recycling of spent nuclear fuels can enhance the sustainabilityof nuclear energy (Taylor et al. 2022a, 2022b). In Europe two strands of research have been followed: (a) theheterogeneous recycling of (U,Pu) in the PUREX process followed by a minor actinide separation process(Geist et al., 2021) and (b) the homogeneous recycling of actinides in a grouped actinide extraction (GANEX)process. The GANEX option has some advantages since it is based on fully decomposable (“CHON”) solventsand produces separate uranium and transuranic products – this adds a proliferation barrier due to theplutonium being mixed with minor actinides.The first GANEX cycle (GANEX-1) to separate the bulk uranium uses a monoamide as a selective extractant.The second cycle is more complex and a number of concepts have been developed in Europe over the last15+ years, including within European collaborative projects (ACSEPT, SACSESS, GENIORS). The GANEX-2cycle requires innovative solvent formulations capable of co-extracting plutonium and the minor actinides(including neptunium) as well as separating the trivalent minor actinides from the lanthanides. Processes havebeen developed and tested on the lab scale, including hot tests with spent fuel (Lyseid Authen et al., 2022).The various solvent extraction processes are briefly introduced, the most suitable choices are pointed out, andthe process schemes are compared to one another.Geist, A.; Adnet, J.-M.; Bourg, S.; Ekberg, C.; Galán, H.; Guilbaud, P.; Miguirditchian, M.; Modolo, G.; Rhodes,C.; Taylor, R., An overview of solvent extraction processes developed in Europe for advanced nuclear fuelrecycling, part 1-Heterogeneous recycling.Separation Science and Technology,56, 2021, 1866–1881.https://doi.org/10.1080/01496395.2020.1795680Lyseid Authen, T.; Adnet, J.-M.; Bourg, S.; Carrott, M.; Ekberg, C.; Galán, H.; Geist, A.; Guilbaud, P.;Miguirditchian, M.; Modolo, G.; Rhodes, C.; Wilden, A.; Taylor, R., An overview of solvent extraction processesdeveloped in Europe for advanced nuclear fuel recycling, Part 2 — homogeneous recycling,SeparationScience and Technology2021, 1-21. https://doi.org/10.1080/01496395.2021.2001531.Taylor, R.; Bodel, W.; Stamford, L.; Butler, G., A review of environmental and economic implications of closingthe nuclear fuel cycle. Part 1: Wastes and environmental impacts,Energies2022, 15, 1433.https://doi.org/10.3390/en15041433.Taylor, R.; Bodel, W.; Butler, G., A Review of Environmental and Economic Implications of Closing the NuclearFuel Cycle-Part Two: Economic Impacts,Energies, 15, 2022, 2472. https://doi:10.3390/en15072472.
536 _ _ |a 1412 - Predisposal (POF4-141)
|0 G:(DE-HGF)POF4-1412
|c POF4-141
|f POF IV
|x 0
536 _ _ |a PATRICIA - Partitioning And Transmuter Research Initiative in a Collaborative Innovation Action (945077)
|0 G:(EU-Grant)945077
|c 945077
|f NFRP-2019-2020
|x 1
536 _ _ |a GENIORS - GEN IV Integrated Oxide fuels recycling strategies (755171)
|0 G:(EU-Grant)755171
|c 755171
|f NFRP-2016-2017-1
|x 2
700 1 _ |a Bourg, Stéphane
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ekberg, Christian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Galán, Hitos
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Geist, Andreas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Modolo, Giuseppe
|0 P:(DE-Juel1)130383
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:909883
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130383
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)
|1 G:(DE-HGF)POF4-140
|0 G:(DE-HGF)POF4-141
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Nukleare Entsorgung
|9 G:(DE-HGF)POF4-1412
|x 0
914 1 _ |y 2022
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21