000909906 001__ 909906
000909906 005__ 20230307101830.0
000909906 0247_ $$2doi$$a10.3390/e24081148
000909906 0247_ $$2ISSN$$a1099-4300
000909906 0247_ $$2Handle$$a2128/32074
000909906 0247_ $$2pmid$$a36010812
000909906 0247_ $$2WOS$$aWOS:000847156900001
000909906 037__ $$aFZJ-2022-03509
000909906 082__ $$a510
000909906 1001_ $$0P:(DE-Juel1)188339$$aOmidvarnia, Amir$$b0$$eCorresponding author
000909906 245__ $$aOn the Spatial Distribution of Temporal Complexity in Resting State and Task Functional MRI
000909906 260__ $$aBasel$$bMDPI$$c2022
000909906 3367_ $$2DRIVER$$aarticle
000909906 3367_ $$2DataCite$$aOutput Types/Journal article
000909906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666153443_19270
000909906 3367_ $$2BibTeX$$aARTICLE
000909906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909906 3367_ $$00$$2EndNote$$aJournal Article
000909906 520__ $$aMeasuring the temporal complexity of functional MRI (fMRI) time series is one approach to assess how brain activity changes over time. In fact, hemodynamic response of the brain is known to exhibit critical behaviour at the edge between order and disorder. In this study, we aimed to revisit the spatial distribution of temporal complexity in resting state and task fMRI of 100 unrelated subjects from the Human Connectome Project (HCP). First, we compared two common choices of complexity measures, i.e., Hurst exponent and multiscale entropy, and observed a high spatial similarity between them. Second, we considered four tasks in the HCP dataset (Language, Motor, Social, and Working Memory) and found high task-specific complexity, even when the task design was regressed out. For the significance thresholding of brain complexity maps, we used a statistical framework based on graph signal processing that incorporates the structural connectome to develop the null distributions of fMRI complexity. The results suggest that the frontoparietal, dorsal attention, visual, and default mode networks represent stronger complex behaviour than the rest of the brain, irrespective of the task engagement. In sum, the findings support the hypothesis of fMRI temporal complexity as a marker of cognition
000909906 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000909906 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909906 7001_ $$0P:(DE-HGF)0$$aLiégeois, Raphaël$$b1
000909906 7001_ $$0P:(DE-HGF)0$$aAmico, Enrico$$b2
000909906 7001_ $$0P:(DE-HGF)0$$aPreti, Maria Giulia$$b3
000909906 7001_ $$0P:(DE-HGF)0$$aZalesky, Andrew$$b4
000909906 7001_ $$0P:(DE-HGF)0$$aVan De Ville, Dimitri$$b5
000909906 773__ $$0PERI:(DE-600)2014734-X$$a10.3390/e24081148$$gVol. 24, no. 8, p. 1148 -$$n8$$p1148$$tEntropy$$v24$$x1099-4300$$y2022
000909906 8564_ $$uhttps://juser.fz-juelich.de/record/909906/files/entropy-24-01148-v2-1.pdf$$yOpenAccess
000909906 8767_ $$8102158$$92022-09-01$$d2022-09-27$$eAPC$$jZahlung erfolgt$$zOABLE
000909906 909CO $$ooai:juser.fz-juelich.de:909906$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000909906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188339$$aForschungszentrum Jülich$$b0$$kFZJ
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)188339$$a Heinrich Heine University Duesseldorf$$b0
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)188339$$a École Polytechnique Fédérale de Lausanne$$b0
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)188339$$a Department of Radiology and Medical Informatics, University of Geneva$$b0
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a École Polytechnique Fédérale de Lausanne$$b1
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Geneva$$b1
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a École Polytechnique Fédérale de Lausanne$$b2
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Geneva$$b2
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a École Polytechnique Fédérale de Lausanne$$b3
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Geneva$$b3
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a CIBM Center for Biomedical Imaging$$b3
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a The University of Melbourne$$b4
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Biomedical Engineering$$b4
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a École Polytechnique Fédérale de Lausanne$$b5
000909906 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Geneva$$b5
000909906 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000909906 9141_ $$y2022
000909906 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000909906 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909906 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000909906 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000909906 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909906 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000909906 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENTROPY-SWITZ : 2021$$d2022-11-18
000909906 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000909906 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000909906 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-19T09:58:39Z
000909906 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-19T09:58:39Z
000909906 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-19T09:58:39Z
000909906 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000909906 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000909906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000909906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000909906 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000909906 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-18
000909906 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000909906 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909906 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909906 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000909906 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000909906 980__ $$ajournal
000909906 980__ $$aVDB
000909906 980__ $$aUNRESTRICTED
000909906 980__ $$aI:(DE-Juel1)INM-7-20090406
000909906 980__ $$aAPC
000909906 9801_ $$aAPC
000909906 9801_ $$aFullTexts