001     909906
005     20230307101830.0
024 7 _ |a 10.3390/e24081148
|2 doi
024 7 _ |a 1099-4300
|2 ISSN
024 7 _ |a 2128/32074
|2 Handle
024 7 _ |a 36010812
|2 pmid
024 7 _ |a WOS:000847156900001
|2 WOS
037 _ _ |a FZJ-2022-03509
082 _ _ |a 510
100 1 _ |a Omidvarnia, Amir
|0 P:(DE-Juel1)188339
|b 0
|e Corresponding author
245 _ _ |a On the Spatial Distribution of Temporal Complexity in Resting State and Task Functional MRI
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666153443_19270
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Measuring the temporal complexity of functional MRI (fMRI) time series is one approach to assess how brain activity changes over time. In fact, hemodynamic response of the brain is known to exhibit critical behaviour at the edge between order and disorder. In this study, we aimed to revisit the spatial distribution of temporal complexity in resting state and task fMRI of 100 unrelated subjects from the Human Connectome Project (HCP). First, we compared two common choices of complexity measures, i.e., Hurst exponent and multiscale entropy, and observed a high spatial similarity between them. Second, we considered four tasks in the HCP dataset (Language, Motor, Social, and Working Memory) and found high task-specific complexity, even when the task design was regressed out. For the significance thresholding of brain complexity maps, we used a statistical framework based on graph signal processing that incorporates the structural connectome to develop the null distributions of fMRI complexity. The results suggest that the frontoparietal, dorsal attention, visual, and default mode networks represent stronger complex behaviour than the rest of the brain, irrespective of the task engagement. In sum, the findings support the hypothesis of fMRI temporal complexity as a marker of cognition
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liégeois, Raphaël
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Amico, Enrico
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Preti, Maria Giulia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zalesky, Andrew
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Van De Ville, Dimitri
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.3390/e24081148
|g Vol. 24, no. 8, p. 1148 -
|0 PERI:(DE-600)2014734-X
|n 8
|p 1148
|t Entropy
|v 24
|y 2022
|x 1099-4300
856 4 _ |u https://juser.fz-juelich.de/record/909906/files/entropy-24-01148-v2-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909906
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188339
910 1 _ |a Heinrich Heine University Duesseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)188339
910 1 _ |a École Polytechnique Fédérale de Lausanne
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)188339
910 1 _ |a Department of Radiology and Medical Informatics, University of Geneva
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)188339
910 1 _ |a École Polytechnique Fédérale de Lausanne
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a University of Geneva
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a École Polytechnique Fédérale de Lausanne
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a University of Geneva
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a École Polytechnique Fédérale de Lausanne
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a University of Geneva
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a CIBM Center for Biomedical Imaging
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a The University of Melbourne
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Department of Biomedical Engineering
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a École Polytechnique Fédérale de Lausanne
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a University of Geneva
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENTROPY-SWITZ : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-19T09:58:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-19T09:58:39Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-19T09:58:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21