000909940 001__ 909940
000909940 005__ 20230123110653.0
000909940 0247_ $$2doi$$a10.1103/PhysRevB.106.L100401
000909940 0247_ $$2ISSN$$a1098-0121
000909940 0247_ $$2ISSN$$a2469-9977
000909940 0247_ $$2ISSN$$a0163-1829
000909940 0247_ $$2ISSN$$a0556-2805
000909940 0247_ $$2ISSN$$a1095-3795
000909940 0247_ $$2ISSN$$a1538-4489
000909940 0247_ $$2ISSN$$a1550-235X
000909940 0247_ $$2ISSN$$a2469-9950
000909940 0247_ $$2ISSN$$a2469-9969
000909940 0247_ $$2Handle$$a2128/31961
000909940 0247_ $$2WOS$$aWOS:000858959100003
000909940 037__ $$aFZJ-2022-03534
000909940 082__ $$a530
000909940 1001_ $$00000-0002-8471-1437$$aSamartzis, A.$$b0$$eCorresponding author
000909940 245__ $$aPinch points and half-moons in dipolar-octupolar Nd2Hf2O7
000909940 260__ $$aWoodbury, NY$$bInst.$$c2022
000909940 3367_ $$2DRIVER$$aarticle
000909940 3367_ $$2DataCite$$aOutput Types/Journal article
000909940 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1664449031_3940
000909940 3367_ $$2BibTeX$$aARTICLE
000909940 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909940 3367_ $$00$$2EndNote$$aJournal Article
000909940 520__ $$aWhile it is established that the pinch point scattering pattern in spin ice arises from an emergent Coulomb phase associated with a magnetic moment that is divergence free, more complex Hamiltonians can introduce a divergence-full part. If these two parts remain decoupled, they give rise to the coexistence of distinct features. Here, we show that the moment in Nd2Hf2O7 forms a static long-range ordered ground state, a flat, gapped pinch point excitation, and dispersive excitations. These results confirm recent theories which predict that the dispersive modes, which arise from the divergence-full moment, host a pinch point pattern of their own, observed experimentally as “half-moons.”
000909940 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000909940 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000909940 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909940 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000909940 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000909940 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000909940 7001_ $$0P:(DE-HGF)0$$aXu, J.$$b1
000909940 7001_ $$0P:(DE-HGF)0$$aAnand, V. K.$$b2
000909940 7001_ $$0P:(DE-HGF)0$$aIslam, A. T. M. N.$$b3
000909940 7001_ $$0P:(DE-HGF)0$$aOllivier, J.$$b4
000909940 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b5
000909940 7001_ $$0P:(DE-HGF)0$$aLake, B.$$b6$$eCorresponding author
000909940 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.106.L100401$$gVol. 106, no. 10, p. L100401$$n10$$pL100401$$tPhysical review / B$$v106$$x1098-0121$$y2022
000909940 8564_ $$uhttps://juser.fz-juelich.de/record/909940/files/2208.12369.pdf$$yOpenAccess
000909940 8564_ $$uhttps://juser.fz-juelich.de/record/909940/files/PhysRevB.106.L100401.pdf$$yOpenAccess
000909940 909CO $$ooai:juser.fz-juelich.de:909940$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000909940 9101_ $$0I:(DE-HGF)0$$60000-0002-8471-1437$$aExternal Institute$$b0$$kExtern
000909940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b5$$kFZJ
000909940 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000909940 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000909940 9141_ $$y2022
000909940 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000909940 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000909940 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000909940 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000909940 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909940 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000909940 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000909940 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000909940 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000909940 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000909940 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000909940 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000909940 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2021$$d2022-11-11
000909940 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000909940 920__ $$lyes
000909940 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000909940 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000909940 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000909940 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000909940 980__ $$ajournal
000909940 980__ $$aVDB
000909940 980__ $$aUNRESTRICTED
000909940 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000909940 980__ $$aI:(DE-588b)4597118-3
000909940 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000909940 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000909940 9801_ $$aFullTexts