001     909945
005     20250129092359.0
024 7 _ |a 10.1109/TQE.2022.3165968
|2 doi
024 7 _ |a 2128/31975
|2 Handle
024 7 _ |a WOS:001369115500050
|2 WOS
037 _ _ |a FZJ-2022-03539
041 _ _ |a English
082 _ _ |a 621.3
100 1 _ |a Fleitmann, Sarah
|0 P:(DE-Juel1)173094
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Noise Reduction Methods for Charge Stability Diagrams of Double Quantum Dots
260 _ _ |a New York, NY
|c 2022
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1664526942_635
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Operating semiconductor quantum dots as quantum bits requires isolating single electrons by adjusting gate voltages. The transitions of electrons to and from the dots appear as a honeycomb-like pattern in recorded charge stability diagrams (CSDs). Thus, detecting the pattern is essential to tune a double dot, but manual tuning is seriously time-consuming. However, automation of this process is difficult because the transitions’ contrast is often low, and noise and background disorder potential shifts disturb the CSDs. Therefore, the signal-to-noise ratio needs to be increased to improve the detection of the line pattern. For this purpose, we evaluate a representative set of edge-preserving smoothing filters and compare them both quantitatively and qualitatively by suitable metrics and visual assessment. We generate artificial data to use full-reference metrics for the evaluation procedure and to optimize the filter parameters. Based on the results of this article, the methods attain a moderate to good amount of noise reduction and structure improvement dependent on the different CSD qualities. In conclusion, we suggest introducing the block-matching and three-dimensional transform-domain filter into the automated tuning processing pipeline. If the data are corrupted by significant amounts of random telegraph noise, the bilateral filter and the rolling guidance filter are also good choices.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hader, Fabian
|0 P:(DE-Juel1)170099
|b 1
700 1 _ |a Vogelbruch, Jan
|0 P:(DE-Juel1)133952
|b 2
700 1 _ |a Humpohl, Simon
|0 P:(DE-Juel1)172767
|b 3
|u fzj
700 1 _ |a Hangleiter, Tobias
|0 0000-0002-5177-6162
|b 4
700 1 _ |a Meyer, Stefanie
|0 P:(DE-Juel1)7756
|b 5
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 6
773 _ _ |a 10.1109/TQE.2022.3165968
|g Vol. 3, p. 1 - 19
|0 PERI:(DE-600)3035782-2
|p 2689-1808
|t IEEE transactions on quantum engineering
|v 3
|y 2022
|x 2689-1808
856 4 _ |u https://juser.fz-juelich.de/record/909945/files/Noise%20Reduction%20Methods%20for%20Charge%20Stability%20Diagrams%20of%20Double%20Quantum%20Dots.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909945
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173094
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)170099
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172767
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172767
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 0000-0002-5177-6162
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)7756
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-03-08T17:02:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-03-08T17:02:16Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-03-08T17:02:16Z
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21