000909946 001__ 909946
000909946 005__ 20241011102739.0
000909946 0247_ $$2doi$$a10.1103/PhysRevResearch.4.043046
000909946 0247_ $$2Handle$$a2128/33030
000909946 0247_ $$2WOS$$aWOS:000888565400002
000909946 037__ $$aFZJ-2022-03540
000909946 082__ $$a530
000909946 1001_ $$0P:(DE-Juel1)186841$$aAdamantopoulos, T.$$b0$$eCorresponding author
000909946 245__ $$aLaser-induced charge and spin photocurrents at the BiAg 2 surface: A first-principles benchmark
000909946 260__ $$aCollege Park, MD$$bAPS$$c2022
000909946 3367_ $$2DRIVER$$aarticle
000909946 3367_ $$2DataCite$$aOutput Types/Journal article
000909946 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670596560_20572
000909946 3367_ $$2BibTeX$$aARTICLE
000909946 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909946 3367_ $$00$$2EndNote$$aJournal Article
000909946 520__ $$aHere, we report first-principles calculations of laser-induced photocurrents at the surface of a prototype Rashba system. By referring to Keldysh nonequilibrium formalism combined with the Wannier interpolation scheme, we perform first-principles electronic structure calculations of a prototype BiAg2 surface alloy, which is a well-known material realization of the Rashba model. In addition to the nonmagnetic ground state situation, we also study the case of in-plane magnetized BiAg2. We calculate the laser-induced charge photocurrents for the ferromagnetic case and the laser-induced spin photocurrents for both the nonmagnetic and the ferromagnetic cases. Our results confirm the emergence of very large in-plane photocurrents as predicted by the Rashba model and are in agreement with previous experimental measurements of THz emission generated at Bi/Ag interfaces. The resulting photocurrents satisfy all the symmetry restrictions with respect to the light helicity and the magnetization direction. We provide microscopic insights into the symmetry and magnitude of the computed currents based on the ab initio multiband electronic structure of the system, and scrutinize the importance of resonant two-band and three-band transitions for driven currents, thereby establishing a benchmark picture of photocurrents at Rashba-like surfaces and interfaces. Our work contributes to establishing the interfacial Rashba spin-orbit interaction as a major mechanism for the generation of in-plane photocurrents, which are of great interest in the field of ultrafast and terahertz spintronics.
000909946 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000909946 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909946 7001_ $$0P:(DE-Juel1)172668$$aMerte, Maximilian$$b1$$ufzj
000909946 7001_ $$0P:(DE-Juel1)178993$$aGo, D.$$b2
000909946 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, F.$$b3
000909946 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b4
000909946 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Y.$$b5
000909946 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.4.043046$$gVol. 4, no. 4, p. 043046$$n4$$p043046$$tPhysical review research$$v4$$x2643-1564$$y2022
000909946 8564_ $$uhttps://juser.fz-juelich.de/record/909946/files/Invoice_INV_22_SEP_009453.pdf
000909946 8564_ $$uhttps://juser.fz-juelich.de/record/909946/files/PhysRevResearch.4.043046.pdf$$yOpenAccess
000909946 8767_ $$8INV/22/SEP/009453$$92022-09-28$$a1200184834$$d2022-10-07$$eAPC$$jZahlung erfolgt$$zUSD 2625,-
000909946 909CO $$ooai:juser.fz-juelich.de:909946$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000909946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186841$$aForschungszentrum Jülich$$b0$$kFZJ
000909946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172668$$aForschungszentrum Jülich$$b1$$kFZJ
000909946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b2$$kFZJ
000909946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b3$$kFZJ
000909946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ
000909946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b5$$kFZJ
000909946 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000909946 9141_ $$y2022
000909946 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909946 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909946 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000909946 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000909946 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
000909946 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
000909946 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-16T10:08:58Z
000909946 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000909946 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-29
000909946 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000909946 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000909946 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909946 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909946 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000909946 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000909946 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000909946 980__ $$ajournal
000909946 980__ $$aVDB
000909946 980__ $$aUNRESTRICTED
000909946 980__ $$aI:(DE-Juel1)PGI-1-20110106
000909946 980__ $$aI:(DE-Juel1)IAS-1-20090406
000909946 980__ $$aAPC
000909946 9801_ $$aAPC
000909946 9801_ $$aFullTexts