001     909946
005     20241011102739.0
024 7 _ |a 10.1103/PhysRevResearch.4.043046
|2 doi
024 7 _ |a 2128/33030
|2 Handle
024 7 _ |a WOS:000888565400002
|2 WOS
037 _ _ |a FZJ-2022-03540
082 _ _ |a 530
100 1 _ |a Adamantopoulos, T.
|0 P:(DE-Juel1)186841
|b 0
|e Corresponding author
245 _ _ |a Laser-induced charge and spin photocurrents at the BiAg 2 surface: A first-principles benchmark
260 _ _ |a College Park, MD
|c 2022
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670596560_20572
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Here, we report first-principles calculations of laser-induced photocurrents at the surface of a prototype Rashba system. By referring to Keldysh nonequilibrium formalism combined with the Wannier interpolation scheme, we perform first-principles electronic structure calculations of a prototype BiAg2 surface alloy, which is a well-known material realization of the Rashba model. In addition to the nonmagnetic ground state situation, we also study the case of in-plane magnetized BiAg2. We calculate the laser-induced charge photocurrents for the ferromagnetic case and the laser-induced spin photocurrents for both the nonmagnetic and the ferromagnetic cases. Our results confirm the emergence of very large in-plane photocurrents as predicted by the Rashba model and are in agreement with previous experimental measurements of THz emission generated at Bi/Ag interfaces. The resulting photocurrents satisfy all the symmetry restrictions with respect to the light helicity and the magnetization direction. We provide microscopic insights into the symmetry and magnitude of the computed currents based on the ab initio multiband electronic structure of the system, and scrutinize the importance of resonant two-band and three-band transitions for driven currents, thereby establishing a benchmark picture of photocurrents at Rashba-like surfaces and interfaces. Our work contributes to establishing the interfacial Rashba spin-orbit interaction as a major mechanism for the generation of in-plane photocurrents, which are of great interest in the field of ultrafast and terahertz spintronics.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Merte, Maximilian
|0 P:(DE-Juel1)172668
|b 1
|u fzj
700 1 _ |a Go, D.
|0 P:(DE-Juel1)178993
|b 2
700 1 _ |a Freimuth, F.
|0 P:(DE-Juel1)130643
|b 3
700 1 _ |a Blügel, S.
|0 P:(DE-Juel1)130548
|b 4
700 1 _ |a Mokrousov, Y.
|0 P:(DE-Juel1)130848
|b 5
773 _ _ |a 10.1103/PhysRevResearch.4.043046
|g Vol. 4, no. 4, p. 043046
|0 PERI:(DE-600)3004165-X
|n 4
|p 043046
|t Physical review research
|v 4
|y 2022
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/909946/files/Invoice_INV_22_SEP_009453.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/909946/files/PhysRevResearch.4.043046.pdf
909 C O |o oai:juser.fz-juelich.de:909946
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186841
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172668
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178993
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130643
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21