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The development of clinical trials has led to substantial improvements in the prevention and treatment of many 
diseases, including brain cancer. Advances in medicine, such as improved surgical techniques, the development of 
new drugs and devices, the use of statistical methods in research, and the development of codes of ethics, have 
considerably influenced the way clinical trials are conducted today. In addition, methods from the broad field of 
artificial intelligence, such as radiomics, have the potential to considerably affect clinical trials and clinical practice in 
the future. Radiomics is a method to extract undiscovered features from routinely acquired imaging data that can 
neither be captured by means of human perception nor conventional image analysis. In patients with brain cancer, 
radiomics has shown its potential for the non-invasive identification of prognostic biomarkers, automated response 
assessment, and differentiation between treatment-related changes from tumour progression. Despite promising 
results, radiomics is not yet established in routine clinical practice nor in clinical trials. In this Viewpoint, the 
European Organization for Research and Treatment of Cancer Brain Tumour Group summarises the current status 
of radiomics, discusses its potential and limitations, envisions its future role in clinical trials in neuro-oncology, and 
provides guidance on how to address the challenges in radiomics.

Introduction 
Advances in medicine, such as improved surgical 
techniques, the development of new drugs and devices, 
the use of statistical methods in research, the recognition 
of the need for regulation, and the development of codes 
of ethics have influenced the way patients with diseases 
such as cancer can be treated nowadays. Artificial 
intelligence (AI) and machine learning have become an 
integral part of our daily lives and might have the 
potential to similarly change the way we provide care to 
patients with brain cancer.

In 2019, an editorial in Nature referred to machine 
learning as the breakthrough of the decade: “few fields 
are untouched by the machine learning revolution, from 
materials science to drug exploration; quantum physics 
to medicine”.1 In general, medicine is moving towards 
the incorporation of AI technologies in health care.2 
Since AI-based methods, such as deep learning and 
radiomics, have been developed and achieved remarkable 
success especially in image classification, it is not 
surprising that AI technologies have developed strongly 
in image-based disciplines, such as dermatology, 
gastroenterology, ophthalmology, neuro-pathology, and 
neuroradiology.2,3

Neuropathological analyses and the acquisition of 
neuroimages by MRI and PET are of utmost importance 
for the diagnosis and follow-up of patients with brain 
cancer; therefore, these are ideal fields for the application 
of AI technologies. Moreover, limitations and risks in 
obtaining tumour tissue from the brain increase the value 
of non-invasive, next generation assessments. In addition, 
efforts to expand the standard criteria for response 
assessment to include advanced image analysis 
techniques, such as radiomics, clearly show the 
widespread recognition, desire, and hope associated with 
these technologies.4,5

Structural MRI remains the method of choice for the 
diagnosis, follow-up, and treatment monitoring of 
patients with brain tumours. In addition, advanced 

imaging techniques based on either MRI, such as 
perfusion or diffusion-weighted imaging, or amino acid 
PET are increasingly applied in neuro-oncology. 
Consequently, the amount and complexity of the available 
data is steadily increasing, but at most only a small 
proportion of the available information is used routinely 
in the clininc or in clinical trials. With sufficient 
computer support, allowing a timely evaluation of these 
complex multiparametric data, neuro-oncology could 
benefit from the application of methods from the field of 
AI to automate and optimise time-consuming processes, 
such as lesion detection, tumour segmentation, and 
response assessment. Moreover, new information can be 
derived from existing data (eg, non-invasive identification 
of prognostic molecular alterations).

After the introduction of the concept by Lambin and 
colleagues,6 radiomics has become particularly relevant 
to medical subdisciplines with a strong connection to 
imaging, such as neuro-oncology. Subsequently, Gillies 
and colleagues7 summarised the whole idea of radiomics 
in one sentence: “images are more than pictures, they 
are data”.

Radiomics is a method to extract undiscovered imaging 
features by converting routinely acquired medical images 
into higher dimensional data, which are not accessible by 
conventional visual image analysis.6–8 Especially in 
combination with other established clinical parameters 
or molecular markers, predictive or prognostic 
mathematical models can be established to support 
clinical decision making. Radiomics might be the answer 
to the demands of modern medicine.9

In brief, the radiomics workflow (figure) typically 
includes several preprocessing steps, such as image 
coregistration and intensity normalisation, before the 
identification and segmentation of the tumour.10 After 
tumour segmentation, radiomics features are extracted 
that can be either mathematically predefined (feature-
based radiomics) or automatically extracted (learned) 
from the input images (deep learning-based radiomics). 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00144-3&domain=pdf


e842  www.thelancet.com/digital-health   Vol 4   November 2022

Viewpoint

Correspondence to: 
PD Dr Philipp Lohmann, Institute 

of Neuroscience and Medicine 
(INM-4), Research Center Juelich 

(FZJ), 52425 Juelich, Germany 
p.lohmann@fz-juelich.de

After the most relevant and informative features have 
been identified by feature selection, a machine-learning 
model using different classifiers can be generated and 
validated. The developed model is then applied to external 
multicentric datasets to evaluate its general isability.

Several studies have shown the potential of radiomics 
in neuro-oncology (eg, for survival prediction; response 
assessment; the identification of important biomarkers, 
such as isocitrate dehydrogenase (IDH) mutation status 
or O-6-methylguanine-DNA-methyltransferase promoter 
methylation status; and differentiation between 
treatment-induced changes from local brain tumour 
relapse).11–20 However, most studies do not aim to improve 
mechanism-based understanding of the developed 
models, which still restricts their  trustworthiness and 
acceptance for a successful clinical translation due to a 
missing link between the radiomics signature and the 
underlying pathology, including specific biological 
pathways.21,22

A tissue-based pathological validation is crucial for a 
deeper understanding of the relationship between 
structural and metabolic neuroimaging, and pathological 
features of the tumour. Most commonly, tissue samples 
collected from contrast-enhanced areas on preoperative 
MRI during open brain surgery or stereotactic biopsies 
are used in studies comparing neuroimaging with 
pathology. Even though initial studies have shown 
biological links between neuroimaging, radiomics, and 
the underlying pathology in various types of cancers,23–26 
restrictions in the availability, number, and size of brain 

tissue samples result in a loss of the ability to fully 
characterise the heterogeneous tumours. These 
restrictions with respect to the histopathological 
correlation of radiomics features might only be overcome 
by large-scale tissue samples or even whole-brain 
specimens.27 To collect a substantial number of whole-
brain specimens from autopsies of patients with brain 
tumours is extremely challenging, not least due to ethical 
reasons. Nevertheless, a stronger emphasis on the 
biological understanding of radiomics features could 
support the clinical translation and use of the technique 
in neuro-oncological clinical trials.28 Although correlation 
with the underlying biology is desirable and certainly 
beneficial to increase the understanding and acceptance 
of AI technologies, it might not be mandatory in the long 
term.21 In medicine, there are many examples of 
established diagnostic and therapeutic procedures for 
which the underlying biological mechanisms are not 
fully understood. Therefore, similar standards could be 
applied to all technologies, even if the initial scepticism 
against AI technologies in medicine is understandable, 
justified, and important.

Despite the rapidly increasing number of studies 
investigating the potential of radiomics in neuro-
oncology with encouraging results, this has led only 
sparsely to the translation of radiomics in clinical trials. 
In this Viewpoint, we summarise the current status, 
discuss the potential and limitations, and envision the 
future role of radiomics in neuro-oncological clinical 
trials. 

Figure: Schematic workflow of a radiomics analysis
Clinical data from the patients is collected and reviewed followed by image acquisition and preprocessing. Afterwards, the tumour or region of interest is segmented 
either manually or using deep learning-based segmentation tools. From the segmented tumours, different mathematically predefined features, such as histogram, 
textural, shape features, or deep features, which are learned from the input data, can be extracted. After extracting numerous features, the most relevant ones are 
identified by a process called feature selection. A predictive machine-learning model is generated using several different classifiers and validated using techniques like 
cross validation. Finally, the performance and generalisability is evaluated, ideally using several large independent multicentric datasets. AI=artificial intelligence. 
GLCM=grey level co-occurrence matrix. GLRLM=grey level run length matrix. GLSZM=grey level size zone matrix. ICC=intraclass correlation coefficient.
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Current status, potential, and limitations 
Despite a large number of studies suggesting an added 
value of radiomics for diagnosis and disease monitoring in 
patients with brain tumours,12,14,16,17,19,20,29–37 this technique is 
far from being routinely used in neuro-oncological clinical 
trials, and the number of radiomics studies based on at 
least evaluating data from clinical trials is low.20,29–37 The 
main reasons for the low number of radiomics studies 
evaluating data from or being part of clinical trials are 
probably a missing standardisation of both imaging 
protocols and reporting of the results, a frequent absence 
of validation of the developed machine-learning model in 
large multicentre trials, a missing emphasis on the 
interpretability and biological meaning of identified 
radiomics features, and poorly defined evaluation criteria 
for editors and reviewers to identify high quality radiomics 
studies. Conversely, there are several initiatives attempting 
to offer mitigations to overcome these limitations. The 
Image Biomarker Standardization Initiative (IBSI) aims to 
improve standardisation of imaging protocols and 
reporting of results,38 and the radiomics quality score, 
introduced by Lambin and colleagues in 2017,8 provides 
evaluation criteria for researchers and reviewers to identify 
high quality radiomics studies. In addition, the transparent 
reporting of multivariable prediction model of individual 
prognosis or diagnosis (TRIPOD) statement and the 
prediction model risk of bias assessment tool (PROBAST) 
have been extended to also consider studies that applied 
machine learning techniques. These extensions are 
referred to as TRIPOD-AI and PROBAST-AI.39 Further-
more, the US Food and Drug Administration (FDA) 
provided guiding principles to enable an improved 
standardisation and use of machine learning in medicine.40 
Despite such efforts, these existing guidelines are rarely 
implemented.

There are only a few clinical trials originally designed 
to evaluate radiomics for the characterisation of patients 
with newly diagnosed brain tumours. Hollon and 
colleagues32 developed a deep convolutional neural 
network that generates radiomics features from the data 
without previous mathematical definition, resulting in a 
machine-learning model for the intraoperative diagnosis 
of brain tumours. The model was trained on a large 
dataset of more than 2·5 million images derived from 
stimulated Raman histology. For diagnosis, the neuronal 
convolutional network learned a hierarchy of recognisable 
histological features, similar to the morphological 
features of tissue samples that a neuropathologist uses 
for visual characterisation. Subsequently, the developed 
machine-learning model was tested in a prospective 
multicentre trial of 278 patients, and it showed a similar 
diagnostic accuracy (95%) for the diagnosis of brain 
tumours compared with the neuropathological 
interpretation of conventional histological images (94%). 
Of note, the radiomics model obtained the diagnosis 
around ten times faster than the conventional 
neuropathological workflow (2–3 min for the radiomics 

model vs 20–30 min for the conventional workflow). 
Thus, this study suggested the potential use of radiomics 
for the intraoperative diagnosis of brain cancer.

The prospective SPORT (German clinical trials register 
number DRKS00019855) trial aimed to characterise and 
predict molecular signatures of brain lesions using 
radiomics signatures obtained from proton magnetic 
resonance spectroscopy.30,41 In this prospective single-
centre study, 120 patients with newly diagnosed brain 
lesions were included. By combining deep autoencoder 
and linear discriminant models, the authors developed a 
classification algorithm that allows for the prediction of 
the origin of a brain lesion (ie, glial or metastatic) and the 
IDH genotype from magnetic resonance spectroscopy. In 
that study, tumour characteristics were predicted by an 
overall accuracy of more than 90% using a classifier 
score.

To date, no prospective clinical trials have used 
radiomics to evaluate the effect of treatment interventions 
(eg, response assessment). However, at least one clinical 
trial is planned to investigate the predictive value of 
radiomics following a radio-oncological intervention. 
The planned multicentre, phase 2 clinical trial, by Takami 
and colleagues,42 aims to determine whether the rate of 
symptomatic radiation toxicity at 12 months after 
neoadjuvant stereotactic radiosurgery in patients with 
brain metastases differs from toxicity rates in patients 
given postoperative stereotactic radiosurgery of the 
resection cavity. The secondary endpoints of the trial are 
the 1-year local control of the treated lesion, 1-year rates 
of leptomeningeal dissemination, and 2-year rates of 
progression-free survival and overall survival. Radiomics 
features derived from MRI will also be evaluated with 
respect to the prediction of primary and secondary 
endpoints. The results of this clinical trial are expected to 
be published no earlier than 2023.

Other studies retrospectively evaluated the value of 
radiomics by reanalysing data from prospective 
interventional trials that did not originally include 
radiomics as part of their analysis.31,33,34 George and 
colleagues31 did a post-hoc analysis of structural MRI data 
from a multicentre trial on the efficacy of durvalumab, a 
programmed cell death ligand 1 (PD-L1) inhibitor, in 
113 patients with glioblastoma and investigated the 
potential of radiomics for prognosis estimation. The 
developed machine-learning model, which used 
radiomics features extracted from the first MRI scan 
after therapy, showed promising results. Future studies 
are necessary to assess the generalisability of the model 
and to integrate additional clinical and advanced imaging 
features to improve the diagnostic performance.

Kickingereder and colleagues33 showed that automated 
volumetric quantification of tumour burden using 
artificial neural networks for the assessment of response 
to bevacizumab plus lomustine is highly accurate and 
outperformed the response assessment in neuro-
oncology (RANO) criteria for predicting overall survival. 
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Because this method has been integrated into a ready-to-
use software infrastructure and the response assessment 
is fully automated on routinely acquired conventional 
MRI, this method has the potential to improve the 
assessment of response in future clinical trials. The main 
findings and essential elements of the ten studies 
discussed in this Viewpoint are summarised in table.

Outlook 
For radiomics to be incorporated into clinical trials, there 
are several obstacles to overcome.43

Different approaches and methods can be followed in 
all steps of the radiomics workflow, which might result in 
varying results. Frequently, approaches differ by reducing 
the involvement of a human expert to a minimum to 
obtain results that are as standardised and reproducible 
as possible. However, these approaches have disad-
vantages that need to be considered. For example, fully 
automated tumour segmentations often give good 
results, but visual inspection of the segmentations by an 
experienced neuroradiologist is required. In addition, 
either all lesions or only the target lesion can be included 
in the radiomics analysis, and whether the entire lesion, 
individual compartments, or areas outside the lesions 
are segmented will affect the outcome and should be 
reported in a consistent manner.

The role of input data should also not be under-
estimated. If highly homogeneous and standardised 
imaging data are used (eg, from clinical trials), there is a 
risk that the resulting radiomics signatures do not reflect 
the underlying pathology but are instead linked to the 
imaging process. Consequently, such models will not 
provide reliable results in clinical practice. Therefore, 
radiomics models should be developed on datasets with a 
diversity of imaging protocols and images of disease and 
normal findings.21

The development and optimisation of the machine-
learning models involve additional trade-offs that directly 
affect the results of the radiomics models. For example, 
mathematically predefined radiomics features can be 
calculated that are not correlated with the underlying 
data and can therefore be used in small datasets. 
Alternatively, deep learning-based radiomics can be used 
to identify or learn features from the data, which are then 
highly correlated with the underlying data and are 
therefore more suitable for very large datasets. 
Techniques, such as transfer learning, that use models 
that have already been pretrained for a different purpose 
and then optimised on the existing data, can circumvent 
the drawbacks of deep-learning-based approaches.44

Feature selection could be integrated into radiomics-
specific trials or represent exploratory endpoints within 
an established trial. Radiomics signatures that have 
already been extensively validated could serve as primary 
or secondary endpoints, especially if specific biological 
processes or processes targeted within a clinical trial can 
be linked with the radiomics signature.21
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Another important trade-off is to balance between 
moderate performing explainable radiomics models and 
high-performance inexplainable models. Finding the 
correct combination of all these approaches for specific 
tasks will be another major challenge in the successful 
translation of radiomics into clinical practice.

In addition to the obvious need for standardisation of 
methods and reporting, rigorous repeatability, 
reproducibility, and efficacy analyses of these approaches 
should be done at multiple sites. Of note, large 
multicentre studies sharing medical data between 
institutions are not only an organisational challenge, but 
they also often fail because of data and privacy protection 
reasons. Without access to sufficient data, radiomics and 
AI methods cannot reach their full potential and 
ultimately fail to make the transition from the experi-
mental stage to clinical practice.

Federated learning is a concept adapted to medical 
imaging by Sheller and colleagues45 and Rieke and 
colleagues46 that potentially overcomes the issue of 
restricted access to multicentric data. The idea behind 
the approach is that a consensus radiomics or machine-
learning model is developed without exchanging patient 
data between institutions. Instead, the radiomics 
workflow is done locally at each participating institution 

and only model parameters and settings are transferred 
before being aggregated to a final consensus model. It 
was shown that a machine-learning model developed by 
federated learning achieved 99% of the quality of a model 
that used centralised data.45 Thus, federated learning 
might be key for a successful translation of many 
promising radiomics studies to clinical routine and trials.

Despite these promising developments, all institutions 
should pay attention to the consistent use of enabling 
technologies such as the findable, accessible, inter-
operable, and reusable (FAIR) data principles.47 Federated 
learning also has disadvantages, such as single point 
failure and the way it is affected by malicious data.48 Single 
point failure describes the issue that the whole federated 
learning system will fail if the central server that integrates 
the results from the local training to a global model is 
compromised by accidental network connection failures, 
unexpected external attacks, or malicious data. Malicious 
data is caused by dishonest clients that train local models 
in a way that is not in agreement with the predefined 
federated learning protocols or submit false data about 
their training results and thereby contaminate the global 
federated learning model. Blockchain is a technology that 
could be used to overcome these shortcomings and the 
combination of federated learning and blockchain 
efficiently addresses privacy and security issues of 
distributed machine learning.48,49

Another important driver for the fast and efficient 
integration of radiomics into clinical routine and clinical 
trials is the availability of Conformité Européene (CE)-
marked and FDA-approved radiomics or machine-
learning software integrated suitably into the clinical 
workflow.50 The ability of radiomics or machine learning 
software to continuously learn from real-world data and 
improve its performance makes these technologies 
uniquely situated among software as a medical device 
(SaMD).51,52 To date, the CE and FDA have cleared or 
approved several machine-learning-based SaMD that 
have only included algorithms that are locked (ie, provide 
the same result each time the same input is applied to it 
and does not change with use, such as decision trees or 
look-up tables). One example is an imaging system that 
uses algorithms to give diagnostic information for skin 
cancer.50,51 However, the power of AI technologies lies in 
their ability to continuously learn and improve over time, 
which might provide a different output compared with 
the output that was initially cleared for a given set of 
inputs.51 To address this, the FDA has proposed an 
innovative approach to embrace the iterative 
improvement power of AI-based SaMD while assuring 
that patient safety is maintained.51 

A publicly accessible database with device details for 
CE-marked medical devices in Europe and FDA-approved 
devices in the USA needs to be established to increase 
transparency of the regulatory pathways and approval 
processes to build public confidence in AI technologies 
in medicine.50

Panel 1: Guidelines and recommendations for radiomics study and future clinical trial 
designs

IBSI
The Image Biomarker Standardization Initiative (IBSI) provides recommendations and 
definitions for standardisation of image biomarker extraction, imaging protocols, and 
reporting of results.38

TRIPOD-AI
Extension of the Transparent Reporting of multivariable prediction model of Individual 
Prognosis or Diagnosis (TRIPOD) statement also takes into consideration prediction 
model studies that applied artificial intelligence (AI) machine-learning techniques.39

PROBAST-AI
Extension of Prediction model risk of Bias Assessment Tool (PROBAST) also takes into 
consideration prediction model studies that applied machine-learning techniques.39

RQS
The Radiomics Quality Score (RQS) provides evaluation criteria for researchers, reviewers, 
and editors to identify high-quality radiomics studies.8

CONSORT-AI
Reporting guidelines for clinical trial reports for interventions involving AI.55

SPIRIT-AI
Guidelines for clinical trial protocols for interventions involving AI.56

FAIR guiding principles
The findability, accessibility, interoperability, and reusability guiding principles for 
scientific data management.47

Software as medical device regulatory framework
Proposed regulatory framework by the US Food and Drug Administration for 
modifications to AI and machine learning-based software as medical device.51
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To support this process and improve trust and trans-
parency with these technologies, Wu and colleagues53 
created an annotated database of FDA-approved medical 
AI devices and analysed how they were evaluated before 

approval. Of note, 37 of the 130 FDA-approved medical 
AI devices used multisite data and prospective studies 
were done in only four cases. Consequently, the authors 
recommend that the performance of AI devices must be 

Panel 2: Recommendations to address sources of bias in the radiomics workflow

Patient selection
• Selected patients should be fully representative of the 

population of interest and not only include extreme cases

Reference labels
• Reference labels (eg, molecular marker, treatment response, 

and survival) need to be clinically relevant, standardised, 
and their assessment reproducible

• Reference labels should not be defined on the imaging data 
that is later used for feature extraction

• The distribution of reference labels should be balanced 
between the groups

• In case of unbalanced data, try resampling methods, 
generate synthetic data, or use performance metrics that 
consider class imbalances (eg, Cohen’s kappa or F1 score)

Image acquisition
• Design standardised image acquisition protocols, including 

software version control
• Phantom or test-retest experiments are recommended to 

assess intrascanner and interscanner or intrasequence and 
intersequence variability

• Quantitative imaging techniques (eg, PET and quantitative 
MRI) are less strongly affected by scanner and sequence or 
protocol variabilities

• For the discovery of a robust radiomics signature, a 
heterogeneous dataset comprising different scanners and 
imaging protocols is advantageous

• Within clinical trials, optimised and highly standardised 
image protocols that ensure image quality and 
reproducibility should be preferred

• Establish multi-institutional collaborations to increase the 
amount of available data

• Use distributed learning approaches to reduce the burden of 
direct data sharing (eg, federated learning)

Image (pre)processing
• Motion correction, normalisation, and harmonisation of 

imaging data is essential
• Use standardised (pre)processing routines from established 

(open source) software or release source code publicly

Segmentation
• Automatic segmentation methods should be preferred, 

which improve the reproducibility of the results and can be 
easily integrated in an automated workflow

• Manual or semiautomated segmentation should, if 
necessary, be done by more than one observer to increase 
robustness and reproducibility

• Use established (open source) software, if available, or 
clinically applied and certified software tools

• Careful visual inspection of the final segmentations is 
essential

Feature extraction
• Adhere to standardised recommendations regarding feature 

extraction and reporting of the results to ensure a common 
definition of all features for fair comparison, reproducibility, 
and quantitative analysis (eg, Image Biomarker 
Standardization Initiative)38

• Use established standardised (open source) software tools 
or release source code publicly

Feature selection
• Select features on the basis of model performance by 

association with reference labels (eg, treatment response 
or survival)

• Balance between moderate-performance explainable 
radiomics models using simple and low numbers of features 
and high-performance inexplainable models using abstract 
and high numbers of features

• Report the statistical criteria that were used during the 
process of feature selection

Model generation and validation
• Resampling methods, such as cross validation and penalised 

regression methods, should be used to generate the models
• Model evaluation should be done on an independent 

validation dataset
• Cross validation can be used in the absence of an 

independent validation dataset

Model testing
• Apply the best-performing model to an ideally large, 

independent, multi-institutional dataset

Reporting of the results
• Report the study results in a standardised way (eg, based on 

the radiomics quality score),8 to improve reproducibility of 
the results but also supports reviewers to objectively assess 
the quality of the radiomics study

Clinical translation
• Try to link the developed radiomics signature with a 

biological meaning
• Aim towards a full integration of the radiomics workflows in 

clinical routine
• Emphasise economic benefits of integrating radiomics into 

the routine clinical workflow—if applicable
• Monitor and evaluate the use and regularly solicit feedback 

from users to continuously improve the developed workflow

For the annotated database see 
https://ericwu09.github.io/
medical-ai-evaluation

https://ericwu09.github.io/medical-ai-evaluation
https://ericwu09.github.io/medical-ai-evaluation
https://ericwu09.github.io/medical-ai-evaluation
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evaluated in multiple clinical sites to ensure that the 
algorithms and models perform well across representative 
populations. Prospective studies of AI devices in 
comparison with standard of care are needed to reduce 
the risk of harmful model overfitting and capture true 
clinical outcomes more realistically. Furthermore, the 
authors state that postmarket surveillance is also needed 
for a deeper understanding and monitoring of un-
intended outcomes and biases that are not assessable in 
prospective multicentre trials.53,54

Furthermore, future radiomics studies need to put 
stronger emphasis on the biological interpretation and 
validation of radiomics signatures, beyond using an 
independent test cohort, to improve our understanding 
of its biological significance and cement the role of 
radiomics in clinical decision making.22,23 Such studies, 
which provide deeper insights into the biological 
significance of radiomics features, will ultimately reduce 
scepticism about AI technologies and pave the way for 
successful incorporation of radiomics into neuro-
oncology clinical trials.

Conclusions 
In summary, radiomics is a promising approach that has 
a great potential to considerably affect the design of 
neuro-oncology trials in the future. A list of recommended 
guidelines and recommendations that should be 
considered in every future study of radiomics and in the 
design of future clinical trials aiming to integrate 
radiomics into clinical practice is provided in panel 1. 
Furthermore, recommendations on how to address and 
avoid sources of bias in the radiomics workflow are 
provided in panel 2.

Nevertheless, to achieve this, several methodological 
hurdles still need to be overcome to finally prove the 
value of radiomics in clinical trials and to make it a 
helpful next-generation tool for clinical practice.
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