000909956 001__ 909956
000909956 005__ 20230929112456.0
000909956 0247_ $$2doi$$a10.1017/S143192762201248X
000909956 0247_ $$2ISSN$$a1431-9276
000909956 0247_ $$2ISSN$$a1435-8115
000909956 0247_ $$2Handle$$a2128/33923
000909956 0247_ $$2pmid$$a36082682
000909956 0247_ $$2WOS$$aWOS:000852052200001
000909956 037__ $$aFZJ-2022-03546
000909956 041__ $$aEnglish
000909956 082__ $$a500
000909956 1001_ $$00000-0002-5789-6763$$aRosi, Paolo$$b0
000909956 245__ $$aAutomatic Alignment of an Orbital Angular Momentum Sorter in a Transmission Electron Microscope Using a Convolutional Neural Network
000909956 260__ $$aNew York, NY$$bCambridge University Press$$c2023
000909956 3367_ $$2DRIVER$$aarticle
000909956 3367_ $$2DataCite$$aOutput Types/Journal article
000909956 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676621406_25495
000909956 3367_ $$2BibTeX$$aARTICLE
000909956 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909956 3367_ $$00$$2EndNote$$aJournal Article
000909956 520__ $$aWe report on the automatic alignment of a transmission electron microscope equipped with an orbital angular momentum sorter using a convolutional neural network. The neural network is able to control all relevant parameters of both the electron-optical setup of the microscope and the external voltage source of the sorter without input from the user. It can compensate for mechanical and optical misalignments of the sorter, in order to optimize its spectral resolution. The alignment is completed over a few frames and can be kept stable by making use of the fast fitting time of the neural network.
000909956 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000909956 536__ $$0G:(EU-Grant)766970$$aQ-SORT - QUANTUM SORTER (766970)$$c766970$$fH2020-FETOPEN-1-2016-2017$$x1
000909956 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x2
000909956 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x3
000909956 536__ $$0G:(GEPRIS)405553726$$aDFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)$$c405553726$$x4
000909956 536__ $$0G:(DE-Juel-1)Z1422.01.18$$aDARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)$$cZ1422.01.18$$x5
000909956 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909956 7001_ $$0P:(DE-Juel1)174151$$aClausen, Alexander$$b1
000909956 7001_ $$0P:(DE-Juel1)171370$$aWeber, Dieter$$b2
000909956 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b3
000909956 7001_ $$0P:(DE-HGF)0$$aFrabboni, Stefano$$b4
000909956 7001_ $$0P:(DE-HGF)0$$aTiemeijer, Peter$$b5
000909956 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b6
000909956 7001_ $$00000-0003-1313-3884$$aRotunno, Enzo$$b7$$eCorresponding author
000909956 7001_ $$0P:(DE-HGF)0$$aGrillo, Vincenzo$$b8
000909956 773__ $$0PERI:(DE-600)1481716-0$$a10.1017/S143192762201248X$$gp. 1 - 9$$n1$$p408–417$$tMicroscopy and microanalysis$$v29$$x1431-9276$$y2023
000909956 8564_ $$uhttps://juser.fz-juelich.de/record/909956/files/s143192762201248xjra.pdf
000909956 8564_ $$uhttps://juser.fz-juelich.de/record/909956/files/Automatic%20alignment%20of%20an%20orbital.pdf$$yOpenAccess
000909956 909CO $$ooai:juser.fz-juelich.de:909956$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000909956 9101_ $$0I:(DE-HGF)0$$60000-0002-5789-6763$$aExternal Institute$$b0$$kExtern
000909956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174151$$aForschungszentrum Jülich$$b1$$kFZJ
000909956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171370$$aForschungszentrum Jülich$$b2$$kFZJ
000909956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b3$$kFZJ
000909956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b6$$kFZJ
000909956 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000909956 9141_ $$y2023
000909956 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-05
000909956 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-05
000909956 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909956 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-05
000909956 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-22$$wger
000909956 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROSC MICROANAL : 2022$$d2023-08-22
000909956 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
000909956 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
000909956 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
000909956 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
000909956 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
000909956 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-22
000909956 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-22
000909956 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-22
000909956 920__ $$lyes
000909956 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000909956 980__ $$ajournal
000909956 980__ $$aVDB
000909956 980__ $$aUNRESTRICTED
000909956 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000909956 9801_ $$aFullTexts