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ABSTRACT

We report the emergence of peculiar chimera states in networks of identical pendula with global phase-lagged coupling. The states reported
include both rotating and quiescent modes, i.e., with non-zero and zero average frequencies. This kind of mixed-mode chimeras may be
interpreted as images of bump states known in neuroscience in the context of modeling the working memory. We illustrate this striking
phenomenon for a network of N = 100 coupled pendula, followed by a detailed description of the minimal non-trivial case of N = 3. Param-
eter regions for five characteristic types of the system behavior are identified, which consist of two mixed-mode chimeras with one and two
rotating pendula, classical weak chimera with all three pendula rotating, synchronous rotation, and quiescent state. The network dynamics is
multistable: up to four of the states can coexist in the system phase state as demonstrated through the basins of attraction. The analysis sug-
gests that the robust mixed-mode chimera states can generically describe the complex dynamics of diverse pendula-like systems widespread
in nature.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0103071

Chimera states generally refer to spatiotemporal patterns in net-
works of identical or close to identical oscillators, in which a
group of oscillators is synchronized and the other group is asyn-
chronous. For networks composed of Kuramoto oscillators with
inertia, chimera states are manifested in the form of solitary

states in which one or a few oscillators split off from the main
synchronized cluster and start to rotate with a different aver-
age frequency. Chimeras of this kind include rotational modes,
and their frequencies are determined by the system parameters.
In networks of excitable elements, such as neurons, in contrary,
chimeric spatiotemporal patterns typically arise in the form of
bump states, where active spiking neurons (large amplitude) coex-
ist with quiescent (subthreshold) ones. The bump states are cre-
ated due to the competition mechanism between attractive and
repulsive couplings, which suppresses the quiescent group. Then,
the pendulum network can be viewed as a model bringing together
the properties of the Kuramoto oscillators with inertia and the
excitable theta neuron model, for which we show the emergence
of mixed-mode chimeras with non-zero and zero average frequen-
cies of individual oscillators from different groups.

I. INTRODUCTION: MIXED-MODE CHIMERA STATES

Patterns of synchronization have been the subject of intensive
study in various fields, ranging from biology, social behavior, and
network science, among others.1–3 To this end, “classical” chimera
states refer to spatiotemporal patterns emerging in networks of non-
locally coupled oscillators as coexistence of coherent and incoherent
groups.4–8 In recent works, the notion of chimera states has been
generalized to the property of frequency clustering, named weak
chimera states.9 Among weak chimeras, a distinctive role is played
by so-called solitary states,10–18 in which one or a few (or even more)
oscillators split off from the main synchronized cluster and start
rotating with a different average frequency. Characteristic exam-
ples of this kind of behavior are supplied by the Kuramoto model
with inertia,19–28 where solitary states arise at all types of the net-
work coupling from global to local.10 An essential property of the
solitary states is that the desynchronized oscillators do not create
localized groups in the space, in contrast to the classical Kuramoto
model without inertia.29,30 Instead, the splitted oscillators appear to
be distributed in the network space in a visually arbitrary manner
subjected to the assigned initial conditions. This fact causes huge
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multiplicity of the coexisting stable solitary states of different config-
urations, given not only by a different number of splitted elements
but also their permutation in the space. The number of coexisting
solitary states grows exponentially, and the network shows spatial
chaos in the thermodynamic limit.31

In this work, we consider a network of globally coupled pendula

mφ̈i + εφ̇i + r sin φi = w +
µ

N

N
∑

j=1

sin[φj − φi − α], (1)

where φi, i = 1, . . . , N, are phase variables; µ is the coupling
strength; α is the phase-lag; and m, ε, and w are inertia,
damping, and natural frequency of each pendulum, respectively.
Experimental evidence of chimera states in systems with similar
dynamics to model (1) were obtained for a ring setup of cou-
pled metronomes.32–34 We find that, besides the amazing chimera
complexity35 inherent to the Kuramoto model with inertia, model
(1) also gains new characteristic solutions caused by the pres-
ence of the nonlinear gravitation terms sin φi. We name them
mixed-mode chimera states, in which a part of oscillators are in a
quiescent mode (slightly oscillating, however) and the others are
rotating with a non-zero average frequency. Note that behavior of
this type is widespread in neuroscience, known as bump states,36–40

which combines the spatially localized groups of persistent neuronal
activity at the silent background of not-firing subthreshold neu-
rons. In particular, bump states are considered appropriate models
for functioning of the working memory in the brain.41–43 During
the last two decades, bump states were intensively studied for var-
ious excitable neuronal models, including their apparent relation to
chimera states.36–40

The emergence of the mixed-mode chimera states in model (1)
is manifested as the mismatch in the average frequency between

the chimera clusters. One of the clusters is similar to the quies-
cent background in bumps, i.e., with zero average frequency, and
the other one consists of rotating oscillators with a non-zero average
frequency. An important characteristic is that to induce the mixed-
mode chimera of a given configuration, specially prepared initial
conditions are needed (similarly again to the bump states). In the
dynamical interpretation, this property follows from the complex
structure of the basins of attraction, in particular, due to the fractal
basin boundary.

The dynamics of a single pendulum in model (1) consists of
a stable equilibrium and a stable limit cycle, including their coexis-
tence at some parameter regions.23 For small values of w (and ε), the
fixed point solution exists and is stable. Increasing w results in the
appearance of a limit cycle, which is born in a homoclinic bifurca-
tion at the Tricomi bifurcation curve.44 With a further increase of w
at line w/r = 1, the stable fixed point is eliminated in a saddle-node
bifurcation, and the only attractor is the limit cycle. In the bistability
region between the Tricomi curve and w/r = 1, both fixed point and
limit cycle can develop depending on the initial conditions. We note
that at r = 0, the model transforms into the Kuramoto model with
inertia, the stable equilibrium is eliminated, and dynamical regimes
reduce to that of a limit cycle with average frequency 〈φ̇〉 = w/ε.
In our numerical simulation, we fix parameters m = 1, ε = 0.1,
r = 1, and set the natural frequency w = 0. The complex chimera-
like regimes in the model (1) arise due to the influence of coupling,
which include self-coupling playing the role of an “external forcing.”

II. NETWORK N =100

Typical examples of mixed-mode chimeras in model (1) of
N = 100 pendula with global coupling are illustrated in Fig. 1. The
figure reveals the appearance of solutions with different number and

FIG. 1. Typical examples of a mixed-mode chimera state with a different number of frequency clusters for model (1) of N = 100 pendula. Left panel: velocity time plots for
µ = 2 and α = 1.2 (a), 1.35 (b), 1.42 (c), and 1.52 (d), respectively, and with the same fixed initial conditions. Middle panel: sustained frequency profiles of the mixed-mode
chimeras (inter-cluster dynamics). Right panel: average frequencies for the individual pendula of the mixed-mode chimeras. Other parameters: m = 1.0, ε = 0.1, r = 1,
ω = 0.
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size of the frequency clusters, where one of the clusters is quies-
cent (only slightly oscillating), but the others are rotating with a
non-zero average frequency. The solutions are obtained by the simu-
lations starting from the same initial conditions for increasing values
of the phase-lag parameter α = 1.2 (a), 1.35 (b), 1.42 (c), and 1.52
(d), where the coupling strength is fixed to µ = 2. The left panel in
the figure shows the transient behavior of the solutions, the mid-
dle panel emboldens the shape of the sustained cluster oscillations
(after the transient) within a narrow time interval, and the average
frequencies are depicted in the right panel. It can be seen that the
complexity of the mixed-mode chimeras grows with the increase of
α. First, in Fig. 1(a), the frequency profile is rather simple, resem-
bling a classical bump state: some pendula of the network rotate,
and the rest are quiescent. The number of the rotating clusters grows
with an increase of α: two such clusters can be seen in (b) and three
in (c). With a further increase of α, the dynamics inside the quies-
cent cluster becomes irregular or even chaotic, showing a “fuzzy”
structure of the individual frequencies; see (d).

Each cluster in a mixed-mode chimera state is categorized by
a common averaged frequency of the oscillators ω̄, with ω̄ 6= 0
for a rotating cluster and ω̄ = 0 for an oscillating cluster in the
background. This is in contrast to classical chimera states, where
a synchronous rotating cluster coexists with a group of incoher-
ent oscillators with a bell shape frequency profile. Furthermore,
the mixed-mode chimeras are not chaotic transients as the classi-
cal counterpart;45 i.e., they do not collapse into synchronization or
rotating wave states. In contrary, they are persistent solutions similar
to solitary states in the Kuramoto model with inertia.10

Note that frequency clustering in chimera states does not
imply, in general, phase clustering (see Ref. 46 for illustrative exam-
ples). In the model (1), however, this is the case as soon as α < π/2:
after formation of a mixed-mode chimera, not only frequencies
but also phases coincide for the oscillators within each cluster. The
dynamics is then governed on an invariant manifold of the reduced
dimension,

D(M) = {φ1 = · · · = φn1 = 81(t); · · · ; φnM
= · · · = φN = 8M(t);

× φ̇1 = · · · = φ̇n1 = 8̇1(t); · · · ; φ̇nM
= · · · = φ̇N = 8̇M(t)}

(2)

such that the in-manifold dynamics is given by the equations

m8̈i + ε8̇i + r sin(8i) = −niw̃ + µ

M
∑

j6=i

nj sin[8j − 8i − α], (3)

where w̃ = µ sin(α) is the modified eigenfrequency and ni is the
ratio of pendula in the i’s cluster to the network size. For differ-
ent values of parameters (α, µ) and the initial conditions, Eq. (3)
can develop in different dynamical regions (such as a fixed point,
bistability, limit cycle, invariant torus, or chaos).

An analytical approach with an asymptotic description can be
developed to describe the cluster dynamics. One can represent 8i’s
as a sum of a monotonic term with respect to time and correction
terms scaled by small perturbation parameter λ,

8i = ω̄it +

∞
∑

l=1

λlδ8l
i. (4)

FIG. 2. Intersecting regions of chimera states for system (7) of N = 3 coupled
pendula in the (α,µ) parameter plane. The chimeras reside on wide areas of the
parameter plane. Type-1 mixed-mode chimera (0: 1: 1) (light blue region) extends
for large values of µ for all α, while the type-2 mixed-mode chimera (0: 0: 1)
only exists in the strip region (shown dashed). The region for classical chimera (1:
1: 2) is shown in dark blue, and it also extends for largeµ. A synchronous rotation
state (light gray) emerges in a homoclinic bifurcation at the Tricomi curve T0; it
exists and is stable for all values of (α,µ) above T0. A quiescent fixed point state
(trivial equilibrium) exists for small α andµ until the saddle-node bifurcation curve
µ sinα = 1. A characteristic example of the patterns is presented in Fig. 3.

Inserting condition (4) into Eq. (3) and sorting by λ, one finds (see
the Appendix) the average frequency of the rotating clusters

ω̄i = −
niw̃

ε
(5)

and the leading correction term

λδ81
i ∼

r

mω̄2
i

sin ω̄it − µ

M
∑

j=1

nj

1ω̄2
ji

sin[1ω̄jit − α], (6)

where 1ω̄ji = ω̄j − ω̄i. The average frequency of the clusters
depends on the parameters (α, µ) and the number of pendulums
in the cluster. The system dynamic from this point of view for any N
could be a subject of future study. In Sec. III, we consider the emer-
gence and coexistence of mixed-mode chimeras for the minimal but
non-trivial network of N = 3 coupled pendula in model (1).

III. MINIMAL NETWORK N =3

The minimal network with chimeric behavior in model (1)
consists of N = 3 coupled pendula,
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φ̈1 + εφ̇1 + sin φ1 =
µ

3
[sin(φ2 − φ1 − α) + sin(φ3 − φ1 − α) − sin α],

φ̈2 + εφ̇2 + sin φ2 =
µ

3
[sin(φ1 − φ2 − α) + sin(φ3 − φ2 − α) − sin α],

φ̈3 + εφ̇3 + sin φ3 =
µ

3
[sin(φ1 − φ3 − α) + sin(φ2 − φ3 − α) − sin α],

(7)

where we put m = r = 1 and w = 0 for simplicity. In this mini-
mal system, we find two types of mixed-mode chimera states with
one and two rotating pendula, respectively. We symbolically denote
them by the average frequencies (ω̄1, ω̄2, ω̄3) of the pendula such that
(0: 1: 1) corresponds to the mixed-mode chimera with two rotat-
ing pendula and one oscillating and (0: 0: 1) denotes one rotating
pendulum and two oscillating. By (1: 2: 2), we denote a “classical”
chimera in which all pendula are in a rotation mode such that two
are synchronized and rotating faster than the third one. In addition,
there are two non-chimeric behaviors: synchronous rotating state
(1: 1: 1) and trivial equilibrium (0: 0: 0) given by in-phase fixed point
φ1 = φ2 = φ3.

Results of a direct numerical simulation of the system (7) in
the two-parameter plane of the phase-lag α and coupling strength
µ are presented in Fig. 2. This figure reveals the appearance of
regions of the chimera states of the three types (0: 1: 1), (0: 0: 1),
and (1: 2: 2), all arising at not-small values of α and µ. Alter-
natively, if α and/or µ are close to zero, the network displays
only the equilibrium state (0: 0: 0), which exists and is stable
in the dotted region below the saddle-node bifurcation curve µ

sin α = 1.
Note that both the mixed-mode chimera (0: 1: 1) and the

rotating chimera (1: 2: 2) reside in large parameter regions with
the area of coexistence (shown in blue and dark gray, respectively),
and they extend up to the large values of α and µ. The second

FIG. 3. Frequency time plots of typical behaviors in system (7) of N = 3 coupled
pendula. Setting coupling strength µ = 2.4, the following patterns are observed
for different values of α: (a) α = 0.8: classical chimera state (1: 2: 2); (b) α =
0.6: type-1 mixed-mode chimera (0: 0: 1) with two quiescent and one rotating
pendula; (c) α = 0.4: type-2 mixed-mode chimera (0: 1: 1) with one quiescent
and two rotating pendula; and (d) α = 0.2: synchronous rotation (1: 1: 1). Other
parameters as in Fig. 2.

mixed-mode chimera (0: 0: 1), contrarily, exists in a smaller region
(shown in dashed). A non-chimeric synchronous rotating state (1:
1: 1) also occupies a large parameter region. It arises in a homoclinic
bifurcation at the curve T0 (equivalent to the Tricomi curve) and is
stable for all α, µ above T0. The detailed dynamical characteristics of
the system behaviors are presented in Fig. 3.

To describe the mechanism of the bifurcations in system (7)
of N = 3 pendula, we start by identifying its fixed points in the
attractive parameter region α < π/2. Note that system (7) repre-
sents a six-dimensional system of differential equations, and due
to the presence of the nonlinear gravitation term sin φ, it cannot
be reduced to a 4-Dim system in phase differences (contrary to the
corresponding Kuramoto model with inertia).

System (7) has a 2D invariant synchronous manifold
M = {φ1 = φ2 = φ3}, and its dynamics is given by a single pendu-
lum equation

φ̈i + εφ̇i + sin(φi) = −µ sin α. (8)

Note that the forcing term in the right hand side of Eq. (8) arises due
to the phase-lagged character of the global coupling, including the
self-coupling. System (7) has two fixed points (equilibria) O and S
inside the synchronous manifold M. In the variables {φ; φ̇}, they are

FIG. 5. Ring of unstable asynchronous fixed points of system (7) of N = 3
coupled pendula at parameters α = 1.2 and µ = 1.2.
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written as O = {φ∗; 0)} and S = {φ∗∗; 0)}, where

φ∗ = − sin−1[µ sin α], (9)

φ∗∗ = π + sin−1[µ sin α]. (10)

Fixed points O and S exist in the (α, µ) parameter region below
the bifurcation curve µ = 1/ sin α, at which they collide and dis-
appear in a saddle-node bifurcation. The in-manifold stability of
the fixed points is controlled by the characteristic equation for two
Lyapunov exponents λ = λ1,2,

λ2 + ελ ±

√

1 − µ2 sin2 = 0, (11)

where (+) and (−) stand for O and S, respectively. Then, S is a saddle
and O is a stable fixed point such that

O :















stable focus, 0 < µ <

√

1 −
ε4

16

1

sin α
,

stable node,

√

1 −
ε4

16

1

sin α
< µ <

1

sin α
.

(12)

Simple analytics confirm that fixed point O is stable not only inside
the synchronous manifold M, but also in transverse directions.
Transverse stability of O is obtained from the equation for transverse
Lyapunov exponents λ = λ3−6,

(λ2 + ελ +

√

1 − µ2 sin2 + µ cos α)
2

= 0. (13)

It has two pairs of two-multiple roots, all having negative real parts
(as µ cos α > 0 at α < π/2), which guarantees the transverse sta-
bility of O. Similar analytics allow us to extend this property to
a larger number of coupled pendula, revealing that O is a stable
equilibrium of model (1) at any finite N. The stability follows from
the characteristic equation for the eigenvalues λ = λi, i = 1, . . . , 2N
of O,

(z +

√

1 − µ2 sin2 α)(z +

√

1 − µ2 sin2 α + µ cos α)
N−1

= 0,

(14)

where z = λ(λ + ε). The first term in Eq. (14) controls the in-
manifold stability, and the second one provides two (N − 1)-
multiple transverse eigenvalues of O, all characterized by negative
real parts at α < π/2.

Besides the two synchronous equilibria O and S, system (7) has
numerous asynchronous fixed points in the region µ > 1, which,
however, are unstable at α < π/2. A remarkable example is illus-
trated in Fig. 4: a continuum of asynchronous fixed points are
assembled in a one-dimensional “ring” type manifold. All points
are unstable for α < π/2; however, they can stabilize in the repul-
sive region α > π/2. Interestingly, a similar situation was reported
recently for the N = 4 dimensional Kuramoto model with iner-
tia, where a continuum of so-called antipodal fixed points exists,35

unstable at α < π/2 but stabilizing at α > π/2. We leave this issue
for future study.

A typical scenario of the multistable basin transition in
system (7) is illustrated in Fig. 5 for growing values of the parameter
α, with fixed coupling strength µ = 1.2. Two different cross sections
of the six-dimensional phase space are shown in upper and lower

FIG. 4. Basins of attraction of system (7) with N = 3 for µ = 1.2 and increasing values of α = 0.98, 1.2, and 1.4. Top and bottom panels are different cross sections
of the six-dimensional phase space, fixing different initial conditions for pendulum no. 2 (shown in the figure) and the same initial values for pendulum no. 3 as (φ3, φ̇3)

= (−0.85, 0.21). Color gamma of five coexisting characteristic states is shown on the right.
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panels, respectively, by fixing the initial conditions of pendula no.
2 & 3. The plots demonstrate a highly developed multistability of the
system (7). At α = 0.98 (left panel), all five characteristic states coex-
ist and occupy wide areas of the space. Here, the parameter point
(α, µ) lies below the curve µ sin α = 1. Beyond the curve (middle
and right panels), synchronous equilibrium (0: 0: 0) disappears, and
basins of only four states are presented. Noticeably, at different cross
sections (cf. upper and lower panels), the basins of attraction occupy
essentially different regions, although, in general, they are qualita-
tively similar. This scenario suggests an essential dependence of the
global system dynamics of model (1) on the initial conditions. The
shape of the basins develops as α approaches π/2, becoming even
“puzzling” as α crosses over π/2.35

IV. CONCLUSIONS

In conclusion, we have shown that mixed-mode chimera states
naturally arise in a small network of N = 3 coupled pendula with
global phase-lagged coupling and demonstrated similar but much
more developed behaviors of this kind in a large network of
N = 100 pendula. Properties of the mixed-mode chimeras specify
their analogy to the bump states from neuroscience, both arising
as a result of the coupling excitability. With a difference, however,
the mixed-mode chimeras grow in networks with bistable indi-
vidual dynamics above the Tricomi bifurcation curve. Moreover,
apparent properties of mixed-mode chimeras closely resemble “fre-
quency clusters,” with the difference that the notion of frequency
clusters does not include the distinction between active rotating and
quiescent groups.

The huge variability of coexisting chimera states indicates, we
suggest, an apparent transition to space chaos in model (1) as N
tends to infinity. A detailed verification of this fact can be a subject of
future study. It would also be interesting to examine deeper the qual-
itative connections between the pendula and the neuronal networks,
different at the first glance but generating similar patterns. Addition-
ally, the system dynamics in our case is not ruled to a large extent by
self-organizing processes (forming rather limited numbers of coher-
ent structures), but by the other “space chaos” mechanism in which a
combinatorially large variety of the stable states can be created given
an appropriate choice of the initial conditions. We believe that the
emergence and multiplicity of the mixed-mode chimera states indi-
cate a common, probably universal phenomenon in networks of a
very different nature due to the competition between inertia and
excitability.
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APPENDIX: ASYMPTOTIC SOLUTION OF A PENDULUM

NETWORK

In order to construct an asymptotic description of model (1),

we introduce a re-scaled time τ = w
ε

and λκ = ε2

w2 for some dummy
variable w. The equation of motion of the network then reads

mφ′′
i + λκwφ′

i + λκr sin φi = −λκniw̃i

+ λκµ
∑

j

nj sin[φj − φi − α], (A1)

where the prime symbol denotes a derivative with respect to re-
scaled time ′ = d

dτ
. One can decompose φ as a monotonic and per-

turbed bounded function with small perturbation φi ≈ φ0,i + λδφ1,i.
Inserting this condition into Eq. (A1) and sorting for perturba-
tion parameter λ, one gets equations of motion for the main and
perturbed parts,

φ′′
0,i = 0, (A2)

mδφ′′
1,i + κwφ′

0,i + κr sin φ0,i = −κniw̃i

+ κµ
∑

j

nj sin[φ0,j − φ0,i − α]. (A3)

Equation (A2) reveals that the unperturbed part φ0 is indeed a
monotonic function in time and gives the average velocity of the
pendulum as a constant. The perturbed part δφ1, however, is a
bounded function implying that Eq. (A3) cannot have a non-zero
torque. This can be prevented by equating wφ′

0,i = −niw̃i. Rewrit-
ing this equation in the original time scale, the dummy parameter w
drops, and one gets the average velocity of the pendulum,

ω̃i ≡ φ̇0,i = −
niw̃i

ε
. (A4)

Inserting this condition into Eq. (A3), one gets the equation of
motion for the perturbed part in the original time scale,

λδφ̈1,i = −r sin(ω̃it) + µ
∑

j

nj sin[ω̃jt − ω̃it − α]. (A5)

The right hand side is now only a function of time, and one finds the
perturbed function δφ by straightforward integration.
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