000909963 001__ 909963
000909963 005__ 20230123110654.0
000909963 0247_ $$2doi$$a10.1021/acsami.2c02397
000909963 0247_ $$2ISSN$$a1944-8244
000909963 0247_ $$2ISSN$$a1944-8252
000909963 0247_ $$2Handle$$a2128/31998
000909963 0247_ $$2pmid$$a35731012
000909963 0247_ $$2WOS$$aWOS:000820935700001
000909963 037__ $$aFZJ-2022-03553
000909963 041__ $$aEnglish
000909963 082__ $$a600
000909963 1001_ $$00000-0001-5961-0661$$aPolani, Shlomi$$b0$$eCorresponding author
000909963 245__ $$aHighly Active and Stable Large Mo-Doped Pt–Ni Octahedral Catalysts for ORR: Synthesis, Post-treatments, and Electrochemical Performance and Stability
000909963 260__ $$aWashington, DC$$bSoc.$$c2022
000909963 3367_ $$2DRIVER$$aarticle
000909963 3367_ $$2DataCite$$aOutput Types/Journal article
000909963 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1664949031_26758
000909963 3367_ $$2BibTeX$$aARTICLE
000909963 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909963 3367_ $$00$$2EndNote$$aJournal Article
000909963 520__ $$aOver the past decade, advances in the colloidal syntheses of octahedral-shaped Pt–Ni alloy nanocatalysts for use in fuel cell cathodes have raised our atomic-scale control of particle morphology and surface composition, which, in turn, helped raise their catalytic activity far above that of benchmark Pt catalysts. Future fuel cell deployment in heavy-duty vehicles caused the scientific priorities to shift from alloy particle activity to stability. Larger particles generally offer enhanced thermodynamic stability, yet synthetic approaches toward larger octahedral Pt–Ni alloy nanoparticles have remained elusive. In this study, we show how a simple manipulation of solvothermal synthesis reaction kinetics involving depressurization of the gas phase at different stages of the reaction allows tuning the size of the resulting octahedral nanocatalysts to previously unachieved scales. We then link the underlying mechanism of our approach to the classical “LaMer” model of nucleation and growth. We focus on large, annealed Mo-doped Pt–Ni octahedra and investigate their synthesis, post-synthesis treatments, and elemental distribution using advanced electron microscopy. We evaluate the electrocatalytic ORR performance and stability and succeed to obtain a deeper understanding of the enhanced stability of a new class of relatively large, active, and long-lived Mo-doped Pt–Ni octahedral catalysts for the cathode of PEMFCs.
000909963 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000909963 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909963 7001_ $$0P:(DE-Juel1)168372$$aMacArthur, Katherine E.$$b1
000909963 7001_ $$0P:(DE-HGF)0$$aKang, Jiaqi$$b2
000909963 7001_ $$0P:(DE-HGF)0$$aKlingenhof, Malte$$b3
000909963 7001_ $$0P:(DE-HGF)0$$aWang, Xingli$$b4
000909963 7001_ $$0P:(DE-Juel1)194653$$aMöller, Tim$$b5$$ufzj
000909963 7001_ $$0P:(DE-HGF)0$$aAmitrano, Raffaele$$b6
000909963 7001_ $$00000-0001-6169-530X$$aChattot, Raphaël$$b7
000909963 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b8$$eCorresponding author$$ufzj
000909963 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b9
000909963 7001_ $$00000-0002-3884-436X$$aStrasser, Peter$$b10$$eCorresponding author
000909963 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.2c02397$$gVol. 14, no. 26, p. 29690 - 29702$$n26$$p29690 - 29702$$tACS applied materials & interfaces$$v14$$x1944-8244$$y2022
000909963 8564_ $$uhttps://juser.fz-juelich.de/record/909963/files/acsami.2c02397.pdf
000909963 8564_ $$uhttps://juser.fz-juelich.de/record/909963/files/Highly%20active%20and%20stable%20large%20mo-doped..pdf$$yPublished on 2022-06-22. Available in OpenAccess from 2023-06-22.
000909963 909CO $$ooai:juser.fz-juelich.de:909963$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168372$$aForschungszentrum Jülich$$b1$$kFZJ
000909963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194653$$aForschungszentrum Jülich$$b5$$kFZJ
000909963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b8$$kFZJ
000909963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b9$$kFZJ
000909963 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000909963 9141_ $$y2022
000909963 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000909963 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000909963 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000909963 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000909963 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000909963 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000909963 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-11
000909963 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000909963 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000909963 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2021$$d2022-11-11
000909963 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS APPL MATER INTER : 2021$$d2022-11-11
000909963 920__ $$lyes
000909963 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000909963 980__ $$ajournal
000909963 980__ $$aVDB
000909963 980__ $$aUNRESTRICTED
000909963 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000909963 9801_ $$aFullTexts