000909987 001__ 909987
000909987 005__ 20230123110654.0
000909987 0247_ $$2doi$$a10.1016/j.msea.2022.143898
000909987 0247_ $$2ISSN$$a0921-5093
000909987 0247_ $$2ISSN$$a1873-4936
000909987 0247_ $$2Handle$$a2128/31999
000909987 0247_ $$2WOS$$aWOS:000862368700002
000909987 037__ $$aFZJ-2022-03573
000909987 041__ $$aEnglish
000909987 082__ $$a530
000909987 1001_ $$00000-0002-2079-0009$$aLi, Jiehua$$b0$$eCorresponding author
000909987 245__ $$aElucidating dynamic precipitation and yield strength of rolled Mg–Al–Ca–Mn alloy
000909987 260__ $$aAmsterdam$$bElsevier$$c2022
000909987 3367_ $$2DRIVER$$aarticle
000909987 3367_ $$2DataCite$$aOutput Types/Journal article
000909987 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672989306_9831
000909987 3367_ $$2BibTeX$$aARTICLE
000909987 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909987 3367_ $$00$$2EndNote$$aJournal Article
000909987 520__ $$aAlthough the precipitation and recrystallization of Mg–Al–Ca–Mn based alloys have been well investigated individually, there is still a lack of a detailed investigation on the effect of the Al-rich clusters, Mn-rich precipitates and/or Ca-rich Laves phases formed from dynamic precipitation during rolling on the grain size and texture as well as yield strength. Here, we have investigated the effect of Mn (1 wt. %) on the dynamic precipitation and yield strength of rolled Mg–3Al–1Ca alloy after rolling up to 1 and 6 passes (at 350 °C and 300 °C). It was found that an effective grain refinement can be obtained due to the fact that the dynamic precipitation enhances dynamic recrystallization by particle stimulated nucleation (PSN) mechanism. No significant texture change was obtained although the dynamic precipitation of Mn-rich particles due to the addition of 1 wt. % Mn results in a change from an RD-split texture to a strong basal texture. Three different Mn-rich phases ((i) large primary Al8Mn5 phase, (ii) the long plated-shaped Al8Mn5 phase, and (iii) nanoscale Al8Mn5 phase), C15 Laves phase (Al2Ca) and Al-rich clusters (G.P. zone), were observed, while no plate-shaped Al–Ca precipitate was observed on the basal plane of α-Mg matrix, indicating a competition among the formation of Al-rich clusters, plate-like Al–Ca precipitates, Ca-rich Laves phase, and Mn–rich phase within α-Mg matrix. Dispersion strengthening by the Ca-rich Laves phase, Mn–rich phase and Al-rich clusters is proposed to be attributed to the significant improvement of yield strength. This investigation highlights the importance of elucidating the effect of the dynamic precipitation on yield strength of rolled Mg–3Al–1Ca–1Mn alloys and provides helpful hints to further optimize the deformation and mechanical properties of Mg–Al–Ca–Mn based alloys.
000909987 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000909987 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x1
000909987 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x2
000909987 536__ $$0G:(GEPRIS)437411567$$aSFB-1394-A03 - Charakterisierung von Versetzungen und planaren Defekten (A03) (437411567)$$c437411567$$x3
000909987 536__ $$0G:(GEPRIS)437420753$$aSFB 1394 B06 - Bruch komplexer intermetallischer Phasen: Einfluss der Temperatur (B06) (437420753)$$c437420753$$x4
000909987 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909987 7001_ $$0P:(DE-HGF)0$$aZhou, Xuyang$$b1
000909987 7001_ $$0P:(DE-HGF)0$$aSu, Jing$$b2
000909987 7001_ $$0P:(DE-HGF)0$$aBreitbach, Benjamin$$b3
000909987 7001_ $$0P:(DE-Juel1)161504$$aLipinska-Chwalek, Marta$$b4$$ufzj
000909987 7001_ $$0P:(DE-HGF)0$$aWang, Huiyuan$$b5
000909987 7001_ $$00000-0003-1601-8267$$aDehm, Gerhard$$b6
000909987 773__ $$0PERI:(DE-600)2012154-4$$a10.1016/j.msea.2022.143898$$gVol. 856, p. 143898 -$$p1-17/ 143898$$tMaterials science and engineering / A$$v856$$x0921-5093$$y2022
000909987 8564_ $$uhttps://juser.fz-juelich.de/record/909987/files/1-s2.0-S0921509322012771-main.pdf$$yOpenAccess
000909987 909CO $$ooai:juser.fz-juelich.de:909987$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000909987 9101_ $$0I:(DE-HGF)0$$60000-0002-2079-0009$$a Max-Planck Institut für Eisenforschung, Max-Planck-Strasse 1, D-40237, Düsseldorf, Germany$$b0
000909987 9101_ $$0I:(DE-HGF)0$$60000-0002-2079-0009$$a Institute of Casting Research, Montanuniversität Leoben, A-8700, Leoben, Austria$$b0
000909987 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161504$$aForschungszentrum Jülich$$b4$$kFZJ
000909987 9101_ $$0I:(DE-HGF)0$$60000-0003-1601-8267$$a Max-Planck Institut für Eisenforschung, Max-Planck-Strasse 1, D-40237, Düsseldorf, Germany$$b6
000909987 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000909987 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
000909987 9141_ $$y2022
000909987 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909987 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000909987 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909987 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000909987 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000909987 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-17
000909987 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000909987 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000909987 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAT SCI ENG A-STRUCT : 2021$$d2022-11-17
000909987 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000909987 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000909987 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000909987 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000909987 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMAT SCI ENG A-STRUCT : 2021$$d2022-11-17
000909987 920__ $$lyes
000909987 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000909987 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000909987 980__ $$ajournal
000909987 980__ $$aVDB
000909987 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000909987 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000909987 980__ $$aUNRESTRICTED
000909987 9801_ $$aFullTexts