001     909987
005     20230123110654.0
024 7 _ |a 10.1016/j.msea.2022.143898
|2 doi
024 7 _ |a 0921-5093
|2 ISSN
024 7 _ |a 1873-4936
|2 ISSN
024 7 _ |a 2128/31999
|2 Handle
024 7 _ |a WOS:000862368700002
|2 WOS
037 _ _ |a FZJ-2022-03573
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Li, Jiehua
|0 0000-0002-2079-0009
|b 0
|e Corresponding author
245 _ _ |a Elucidating dynamic precipitation and yield strength of rolled Mg–Al–Ca–Mn alloy
260 _ _ |a Amsterdam
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672989306_9831
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Although the precipitation and recrystallization of Mg–Al–Ca–Mn based alloys have been well investigated individually, there is still a lack of a detailed investigation on the effect of the Al-rich clusters, Mn-rich precipitates and/or Ca-rich Laves phases formed from dynamic precipitation during rolling on the grain size and texture as well as yield strength. Here, we have investigated the effect of Mn (1 wt. %) on the dynamic precipitation and yield strength of rolled Mg–3Al–1Ca alloy after rolling up to 1 and 6 passes (at 350 °C and 300 °C). It was found that an effective grain refinement can be obtained due to the fact that the dynamic precipitation enhances dynamic recrystallization by particle stimulated nucleation (PSN) mechanism. No significant texture change was obtained although the dynamic precipitation of Mn-rich particles due to the addition of 1 wt. % Mn results in a change from an RD-split texture to a strong basal texture. Three different Mn-rich phases ((i) large primary Al8Mn5 phase, (ii) the long plated-shaped Al8Mn5 phase, and (iii) nanoscale Al8Mn5 phase), C15 Laves phase (Al2Ca) and Al-rich clusters (G.P. zone), were observed, while no plate-shaped Al–Ca precipitate was observed on the basal plane of α-Mg matrix, indicating a competition among the formation of Al-rich clusters, plate-like Al–Ca precipitates, Ca-rich Laves phase, and Mn–rich phase within α-Mg matrix. Dispersion strengthening by the Ca-rich Laves phase, Mn–rich phase and Al-rich clusters is proposed to be attributed to the significant improvement of yield strength. This investigation highlights the importance of elucidating the effect of the dynamic precipitation on yield strength of rolled Mg–3Al–1Ca–1Mn alloys and provides helpful hints to further optimize the deformation and mechanical properties of Mg–Al–Ca–Mn based alloys.
536 _ _ |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)
|0 G:(DE-HGF)POF4-5353
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 1
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 2
536 _ _ |a SFB-1394-A03 - Charakterisierung von Versetzungen und planaren Defekten (A03) (437411567)
|0 G:(GEPRIS)437411567
|c 437411567
|x 3
536 _ _ |a SFB 1394 B06 - Bruch komplexer intermetallischer Phasen: Einfluss der Temperatur (B06) (437420753)
|0 G:(GEPRIS)437420753
|c 437420753
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhou, Xuyang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Su, Jing
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Breitbach, Benjamin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lipinska-Chwalek, Marta
|0 P:(DE-Juel1)161504
|b 4
|u fzj
700 1 _ |a Wang, Huiyuan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dehm, Gerhard
|0 0000-0003-1601-8267
|b 6
773 _ _ |a 10.1016/j.msea.2022.143898
|g Vol. 856, p. 143898 -
|0 PERI:(DE-600)2012154-4
|p 1-17/ 143898
|t Materials science and engineering / A
|v 856
|y 2022
|x 0921-5093
856 4 _ |u https://juser.fz-juelich.de/record/909987/files/1-s2.0-S0921509322012771-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909987
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Max-Planck Institut für Eisenforschung, Max-Planck-Strasse 1, D-40237, Düsseldorf, Germany
|0 I:(DE-HGF)0
|b 0
|6 0000-0002-2079-0009
910 1 _ |a Institute of Casting Research, Montanuniversität Leoben, A-8700, Leoben, Austria
|0 I:(DE-HGF)0
|b 0
|6 0000-0002-2079-0009
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161504
910 1 _ |a Max-Planck Institut für Eisenforschung, Max-Planck-Strasse 1, D-40237, Düsseldorf, Germany
|0 I:(DE-HGF)0
|b 6
|6 0000-0003-1601-8267
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5353
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 1
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAT SCI ENG A-STRUCT : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MAT SCI ENG A-STRUCT : 2021
|d 2022-11-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21