000910024 001__ 910024
000910024 005__ 20230310131334.0
000910024 0247_ $$2doi$$a10.1016/j.actamat.2022.118265
000910024 0247_ $$2ISSN$$a1359-6454
000910024 0247_ $$2ISSN$$a1873-2453
000910024 0247_ $$2Handle$$a2128/31992
000910024 0247_ $$2WOS$$aWOS:000862266600001
000910024 037__ $$aFZJ-2022-03579
000910024 041__ $$aEnglish
000910024 082__ $$a670
000910024 1001_ $$0P:(DE-HGF)0$$aVojtech, V.$$b0
000910024 245__ $$aMacroscopic magnetic hardening due to nanoscale spinodal decomposition in Fe–Cr
000910024 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000910024 3367_ $$2DRIVER$$aarticle
000910024 3367_ $$2DataCite$$aOutput Types/Journal article
000910024 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1664866765_12569
000910024 3367_ $$2BibTeX$$aARTICLE
000910024 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910024 3367_ $$00$$2EndNote$$aJournal Article
000910024 520__ $$aThe Fe–Cr alloy system is the basis of ferritic steels, which are important structural materials for many applications, including their use in future fusion reactors. However, when exposed to elevated temperatures and radiation, the Fe–Cr system can undergo phase separation, resulting in Fe-rich (α) and Cr-rich (α’) nanoscale regions. This in turn generates the so-called “475 °C embrittlement” and modifies the magnetic properties. The correlation between the microstructural and magnetic changes is however poorly understood, which currently prevents the possibility of assessing the material in a non-destructive way by magnetometry. Here, we study the microstructural decomposition of an Fe–40Cr alloy induced by annealing at 500 °C for extensive time scales and its impact on the magnetic properties using magnetometry and advanced experimental methods, such as atom probe tomography, transmission electron microscopy (TEM), and micromagnetic simulations. Upon annealing, the alloy rapidly exhibits a spinodal decomposition morphology with a typical length scale of about 10 nm. With increasing annealing time, the hardness assessed by Vickers testing, the magnetic saturation, and the coercivity increase, which correlates with an increase in α-volume fraction and the system's heterogeneity. The magnetic domain patterns imaged by TEM and interpreted with the help of micromagnetic simulations reveal at the nanometer scale the impact of decomposition on the magnetic response of Fe–Cr.
000910024 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000910024 536__ $$0G:(GEPRIS)405553726$$aDFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)$$c405553726$$x1
000910024 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x2
000910024 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910024 7001_ $$00000-0003-1072-1701$$aCharilaou, M.$$b1
000910024 7001_ $$aKovács, A.$$b2
000910024 7001_ $$00000-0001-6221-9874$$aFirlus, A.$$b3
000910024 7001_ $$0P:(DE-Juel1)130654$$aGerstl, S. S. A.$$b4$$ufzj
000910024 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b5$$ufzj
000910024 7001_ $$00000-0003-2825-6027$$aLöffler, J. F.$$b6$$eCorresponding author
000910024 7001_ $$00000-0002-8379-9705$$aSchäublin, R. E.$$b7$$eCorresponding author
000910024 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2022.118265$$gVol. 240, p. 118265 -$$p118265 -$$tActa materialia$$v240$$x1359-6454$$y2022
000910024 8564_ $$uhttps://juser.fz-juelich.de/record/910024/files/1-s2.0-S1359645422006450-main.pdf$$yOpenAccess
000910024 8564_ $$uhttps://juser.fz-juelich.de/record/910024/files/Macroscopic%20magnetic%20hardening.pdf$$yOpenAccess
000910024 909CO $$ooai:juser.fz-juelich.de:910024$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000910024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130654$$aForschungszentrum Jülich$$b4$$kFZJ
000910024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000910024 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000910024 9141_ $$y2022
000910024 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910024 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000910024 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910024 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000910024 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2021$$d2022-11-15
000910024 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000910024 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000910024 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000910024 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000910024 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000910024 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000910024 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000910024 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000910024 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2021$$d2022-11-15
000910024 920__ $$lyes
000910024 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000910024 980__ $$ajournal
000910024 980__ $$aVDB
000910024 980__ $$aUNRESTRICTED
000910024 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000910024 9801_ $$aFullTexts