000910064 001__ 910064
000910064 005__ 20231027114346.0
000910064 0247_ $$2doi$$a10.1021/acsanm.2c04165
000910064 0247_ $$2Handle$$a2128/33657
000910064 0247_ $$2WOS$$aWOS:000877146000001
000910064 037__ $$aFZJ-2022-03592
000910064 082__ $$a540
000910064 1001_ $$0P:(DE-Juel1)179230$$aSchmidt, Niclas$$b0
000910064 245__ $$aIn-Gap States of HfO 2 Nanoislands Driven by Crystal Nucleation: Implications for Resistive Random-Access Memory Devices
000910064 260__ $$aWashington, DC$$bACS Publications$$c2023
000910064 3367_ $$2DRIVER$$aarticle
000910064 3367_ $$2DataCite$$aOutput Types/Journal article
000910064 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673949313_26150
000910064 3367_ $$2BibTeX$$aARTICLE
000910064 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910064 3367_ $$00$$2EndNote$$aJournal Article
000910064 520__ $$aEnvisioned extremely scaled, high-performance memory devices request to conduct the step from thin semiconductor films to nanoscale structures and the use of promising high-k materials such as hafnium oxide (HfO2). HfO2 is well suited for use in resistive random-access memory (ReRAM) devices based on the valence change mechanism. Here, we provide a decidedly scaled system, namely, HfO2 nanoislands that are grown by van der Waals epitaxy on highly oriented pyrolytic graphite (HOPG). The electronic and structural properties of these well-separated, crystalline HfO2 nanoislands are investigated by scanning probe methods as well as ab initio methods. The topography reveals homogeneously formed HfO2 nanoislands with areas down to 7 nm2 and a thickness of one unit cell. They exhibit several acceptor- and donor-like in-gap states in addition to the bulk band gap, implying bulk properties. X-ray photoelectron spectroscopy indicates hafnium carbide formation as one possible origin for defect states. Going further to the crystal nucleation of HfO2, nanocrystals with a diameter of 2.7–4.5 Å are identified next to carbon vacancies in the topmost HOPG layer, indicating that carbon is incorporated into the islands at early nucleation stages. A precise description of these nuclei is accomplished by the simulation of small HfmOn(:C) clusters (m = 3 to 10; n = 3 to 22) with and without carbon incorporation using ab initio methods. The comparison of the theoretically determined lowest-energy clusters and electronic states with the experimental results allows us to identify the structure of the most relevant HfO2 sub-nanometer crystals formed during the first nucleation steps and the nature of the in-gap states found at the surfaces of HfO2 nanoislands. That way, a model system is derived that consists of distinct structural units, related to surface states or defect states, respectively, that will promote the tailoring of in-gap states of smallest HfO2 structures and thus the scalability of memory devices.
000910064 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000910064 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000910064 588__ $$aDataset connected to DataCite
000910064 7001_ $$0P:(DE-Juel1)130926$$aRushchanskii, Konstantin Z.$$b1$$eCorresponding author
000910064 7001_ $$00000-0002-9447-1502$$aTrstenjak, Urška$$b2
000910064 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b3$$ufzj
000910064 7001_ $$0P:(DE-Juel1)130751$$aKarthäuser, Silvia$$b4$$eCorresponding author
000910064 773__ $$0PERI:(DE-600)2916552-0$$a10.1021/acsanm.2c04165$$gp. acsanm.2c04165$$n1$$p148-159$$tACS applied nano materials$$v6$$x2574-0970$$y2023
000910064 8564_ $$uhttps://juser.fz-juelich.de/record/910064/files/Invoice-APC600354747.pdf
000910064 8564_ $$uhttps://juser.fz-juelich.de/record/910064/files/Invoice-APC600354754.pdf
000910064 8564_ $$uhttps://juser.fz-juelich.de/record/910064/files/acsanm.2c04165-1.pdf$$yOpenAccess
000910064 8767_ $$8APC600354754$$92022-10-05$$a1200184997$$d2022-10-11$$eCover$$jZahlung erfolgt$$z1650$
000910064 8767_ $$8APC600354747$$92022-10-05$$a1200184996$$d2022-10-11$$eHybrid-OA$$jZahlung erfolgt$$z3750$
000910064 909CO $$ooai:juser.fz-juelich.de:910064$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000910064 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179230$$aForschungszentrum Jülich$$b0$$kFZJ
000910064 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130926$$aForschungszentrum Jülich$$b1$$kFZJ
000910064 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-9447-1502$$aForschungszentrum Jülich$$b2$$kFZJ
000910064 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b3$$kFZJ
000910064 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130751$$aForschungszentrum Jülich$$b4$$kFZJ
000910064 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000910064 9141_ $$y2023
000910064 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000910064 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000910064 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910064 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000910064 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL NANO MATER : 2022$$d2023-10-27
000910064 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000910064 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000910064 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000910064 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000910064 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27
000910064 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
000910064 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL NANO MATER : 2022$$d2023-10-27
000910064 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000910064 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000910064 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x2
000910064 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000910064 980__ $$ajournal
000910064 980__ $$aVDB
000910064 980__ $$aUNRESTRICTED
000910064 980__ $$aI:(DE-Juel1)PGI-7-20110106
000910064 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910064 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910064 980__ $$aI:(DE-82)080009_20140620
000910064 980__ $$aAPC
000910064 9801_ $$aAPC
000910064 9801_ $$aFullTexts