001     910064
005     20231027114346.0
024 7 _ |a 10.1021/acsanm.2c04165
|2 doi
024 7 _ |a 2128/33657
|2 Handle
024 7 _ |a WOS:000877146000001
|2 WOS
037 _ _ |a FZJ-2022-03592
082 _ _ |a 540
100 1 _ |a Schmidt, Niclas
|0 P:(DE-Juel1)179230
|b 0
245 _ _ |a In-Gap States of HfO 2 Nanoislands Driven by Crystal Nucleation: Implications for Resistive Random-Access Memory Devices
260 _ _ |a Washington, DC
|c 2023
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673949313_26150
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Envisioned extremely scaled, high-performance memory devices request to conduct the step from thin semiconductor films to nanoscale structures and the use of promising high-k materials such as hafnium oxide (HfO2). HfO2 is well suited for use in resistive random-access memory (ReRAM) devices based on the valence change mechanism. Here, we provide a decidedly scaled system, namely, HfO2 nanoislands that are grown by van der Waals epitaxy on highly oriented pyrolytic graphite (HOPG). The electronic and structural properties of these well-separated, crystalline HfO2 nanoislands are investigated by scanning probe methods as well as ab initio methods. The topography reveals homogeneously formed HfO2 nanoislands with areas down to 7 nm2 and a thickness of one unit cell. They exhibit several acceptor- and donor-like in-gap states in addition to the bulk band gap, implying bulk properties. X-ray photoelectron spectroscopy indicates hafnium carbide formation as one possible origin for defect states. Going further to the crystal nucleation of HfO2, nanocrystals with a diameter of 2.7–4.5 Å are identified next to carbon vacancies in the topmost HOPG layer, indicating that carbon is incorporated into the islands at early nucleation stages. A precise description of these nuclei is accomplished by the simulation of small HfmOn(:C) clusters (m = 3 to 10; n = 3 to 22) with and without carbon incorporation using ab initio methods. The comparison of the theoretically determined lowest-energy clusters and electronic states with the experimental results allows us to identify the structure of the most relevant HfO2 sub-nanometer crystals formed during the first nucleation steps and the nature of the in-gap states found at the surfaces of HfO2 nanoislands. That way, a model system is derived that consists of distinct structural units, related to surface states or defect states, respectively, that will promote the tailoring of in-gap states of smallest HfO2 structures and thus the scalability of memory devices.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|x 0
|f POF IV
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Rushchanskii, Konstantin Z.
|0 P:(DE-Juel1)130926
|b 1
|e Corresponding author
700 1 _ |a Trstenjak, Urška
|0 0000-0002-9447-1502
|b 2
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 3
|u fzj
700 1 _ |a Karthäuser, Silvia
|0 P:(DE-Juel1)130751
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acsanm.2c04165
|g p. acsanm.2c04165
|0 PERI:(DE-600)2916552-0
|n 1
|p 148-159
|t ACS applied nano materials
|v 6
|y 2023
|x 2574-0970
856 4 _ |u https://juser.fz-juelich.de/record/910064/files/Invoice-APC600354747.pdf
856 4 _ |u https://juser.fz-juelich.de/record/910064/files/Invoice-APC600354754.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910064/files/acsanm.2c04165-1.pdf
909 C O |o oai:juser.fz-juelich.de:910064
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179230
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 0000-0002-9447-1502
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130751
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL NANO MATER : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL NANO MATER : 2022
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21