

OpenGPT-X

Training Large Language Models on HPC Systems

Carolin Penke, Chelsea John, Andreas Herten, Jan Ebert, Stefan Kesselheim, Estela Suarez

- + not inherently sequential, parallel computations possible
- + matrix-matrix products

C. Penke, 2022, A mathematician's introduction to transformers and large language models, JSC Accelerating Devices Lab Blog, https://doi.org/10.34732/xdvblg-qsbtyx

Scalar product of two vectors

3D Parallelism for Training

To scale to a full supercomputer three kinds of parallelism are intertwined.

1. Data parallelism (DP)

- Input data is distributed across ranks
- Full model replica on each rank
- Gradients are computed for local mini batch
- Gradients are synchronized during backward propagation (all-reduce)

2. Pipeline parallelism (PP)

- Layers of each data parallel replica are distributed across ranks
- Overlay computations by dividing local mini batch into micro-batches (Gradient accumulation steps)
- Clever scheduling strategies

2. Tensor parallelism (TP)

- Weight tensors (matrices) of each pipeline stage are distributed across ranks
- Multi-headed attention parallel by nature
- Feed-forward layers distributed column- or row-wise to minimize communication
- Communication intensive (two all reduces per layer), NVLink useful

#GPUs = DP × PP × TP = DP × MP

Novel Architectures

Flagship Cluster: Juwels Booster with> 3200 Nvidia A100 GPUs, 40 GB

additional nodes for evaluation and testing

JURECA Evaluation Platform

AMD Instinct MI250 GPUs

A. Herten, 2022, First Benchmarks with AMD Instinct MI250 GPUs at JSC, JSC Accelerating Devices Lab Blog, https://doi.org/10.34732/xdvblg-rmlyc3

Graphcore IPU-POD4

https://docs.graphcore.ai/projects/graphcore-ipum2000-datasheet/en/latest/index.html

Scalability and Model Layouting

- Training highly scalable
- Goal: High throughput on small node counts (for testing) and large node counts (final training).
- ~ **50** % of peak e (312 TFLOPS/s) easily possible
- Good performance and simplicity:
- Data parallelism, limited scalability Problem: Large model does not fit into memory → Pipeline and
- Tensor parallelism needed Tensor parallelism: More communication → Distribution within node
- Pipeline parallelism: Less arithmetic efficiency ("Pipeline bubble").
- Challenge: A100 only 40GB

Strong scaling for 13B model

Model layout for 13B parameters on 8 nodes, 32 GPUs

- Parameters + gradients + optimizer states = 56 GB (ZeRO Stage 1)
- MP = 4 reduces it to 14 GB per GPU.

Challenges and Collaborations

Sequana 2 cabinet has a **hardware problem** with flipping links.

- Spurious error showing up as port error in NCCL
- Hard to reproduce, even harder to "debug"
- Reproducing SOTA vs. novel research
- Energy consumption
- GPT-3 training = power for > 100 houses for a year.

jwb0694:13939:14102 [0] transport/net_ib.cc:94 NCCL WARN NET/IB : Got async event : port error jwb0694:13938:14101 [0] transport/net_ib.cc:94 NCCL WARN NET/IB : Got async event : port error jwb0694:13940:14103 [0] transport/net_ib.cc:94 NCCL WARN NET/IB : Got async event : port error jwb0694:13941:14108 [0] transport/net ib.cc:94 NCCL WARN NET/IB : Got async event : port error

Possible collaborations: Do you have experience with LLMs or interesting ML-specific hardware?