000910082 001__ 910082
000910082 005__ 20240712113000.0
000910082 0247_ $$2doi$$a10.1021/jacs.2c07226
000910082 0247_ $$2ISSN$$a0002-7863
000910082 0247_ $$2ISSN$$a1520-5126
000910082 0247_ $$2ISSN$$a1943-2984
000910082 0247_ $$2Handle$$a2128/32010
000910082 0247_ $$2pmid$$a36130265
000910082 0247_ $$2WOS$$aWOS:000859957100001
000910082 037__ $$aFZJ-2022-03601
000910082 082__ $$a540
000910082 1001_ $$0P:(DE-Juel1)172856$$aWeber, Moritz L.$$b0
000910082 245__ $$aAtomistic Insights into Activation and Degradation of La 0.6 Sr 0.4 CoO 3−δ Electrocatalysts under Oxygen Evolution Conditions
000910082 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2022
000910082 3367_ $$2DRIVER$$aarticle
000910082 3367_ $$2DataCite$$aOutput Types/Journal article
000910082 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667373077_21228
000910082 3367_ $$2BibTeX$$aARTICLE
000910082 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910082 3367_ $$00$$2EndNote$$aJournal Article
000910082 520__ $$aThe stability of perovskite oxide catalysts for the oxygen evolution reaction (OER) plays a critical role in their applicability in water splitting concepts. Decomposition of perovskite oxides under applied potential is typically linked to cation leaching and amorphization of the material. However, structural changes and phase transformations at the catalyst surface were also shown to govern the activity of several perovskite electrocatalysts under applied potential. Hence, it is crucial for the rational design of durable perovskite catalysts to understand the interplay between the formation of active surface phases and stability limitations under OER conditions. In the present study, we reveal a surface-dominated activation and deactivation mechanism of the prominent electrocatalyst La0.6Sr0.4CoO3−δ under steady-state OER conditions. Using a multiscale microscopy and spectroscopy approach, we identify the evolving Co-oxyhydroxide as catalytically active surface species and La-hydroxide as inactive species involved in the transient degradation behavior of the catalyst. While the leaching of Sr results in the formation of mixed surface phases, which can be considered as a part of the active surface, the gradual depletion of Co from a self-assembled active CoO(OH) phase and the relative enrichment of passivating La(OH)3 at the electrode surface result in the failure of the perovskite catalyst under applied potential.
000910082 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000910082 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910082 7001_ $$00000-0001-9227-8752$$aLole, Gaurav$$b1
000910082 7001_ $$0P:(DE-Juel1)179101$$aKormanyos, Attila$$b2
000910082 7001_ $$0P:(DE-Juel1)180786$$aSchwiers, Alexander$$b3$$ufzj
000910082 7001_ $$0P:(DE-Juel1)187578$$aHeymann, Lisa$$b4$$ufzj
000910082 7001_ $$0P:(DE-Juel1)171497$$aSpeck, Florian D.$$b5
000910082 7001_ $$00000-0003-3191-0376$$aMeyer, Tobias$$b6
000910082 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b7$$ufzj
000910082 7001_ $$0P:(DE-Juel1)168567$$aCherevko, Serhiy$$b8
000910082 7001_ $$0P:(DE-HGF)0$$aJooss, Christian$$b9
000910082 7001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b10
000910082 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b11$$eCorresponding author$$ufzj
000910082 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.2c07226$$gVol. 144, no. 39, p. 17966 - 17979$$n39$$p17966 - 17979$$tJournal of the American Chemical Society$$v144$$x0002-7863$$y2022
000910082 8564_ $$uhttps://juser.fz-juelich.de/record/910082/files/Invoice_APC600346521.pdf
000910082 8564_ $$uhttps://juser.fz-juelich.de/record/910082/files/Preprint_MLW.PDF$$yOpenAccess
000910082 8564_ $$uhttps://juser.fz-juelich.de/record/910082/files/jacs.2c07226.pdf$$yOpenAccess
000910082 8767_ $$8APC600346521$$92022-09-05$$a1200184175$$d2022-09-09$$eHybrid-OA$$jZahlung erfolgt$$zUSD 4750,-
000910082 909CO $$ooai:juser.fz-juelich.de:910082$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000910082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172856$$aForschungszentrum Jülich$$b0$$kFZJ
000910082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179101$$aForschungszentrum Jülich$$b2$$kFZJ
000910082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180786$$aForschungszentrum Jülich$$b3$$kFZJ
000910082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187578$$aForschungszentrum Jülich$$b4$$kFZJ
000910082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b7$$kFZJ
000910082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168567$$aForschungszentrum Jülich$$b8$$kFZJ
000910082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b10$$kFZJ
000910082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b11$$kFZJ
000910082 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000910082 9141_ $$y2022
000910082 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910082 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000910082 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000910082 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-30
000910082 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000910082 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910082 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-30
000910082 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910082 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-09$$wger
000910082 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2021$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000910082 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ AM CHEM SOC : 2021$$d2022-11-09
000910082 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000910082 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000910082 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x2
000910082 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x3
000910082 9801_ $$aFullTexts
000910082 980__ $$ajournal
000910082 980__ $$aVDB
000910082 980__ $$aI:(DE-Juel1)PGI-7-20110106
000910082 980__ $$aI:(DE-82)080009_20140620
000910082 980__ $$aI:(DE-Juel1)IEK-1-20101013
000910082 980__ $$aI:(DE-Juel1)IEK-11-20140314
000910082 980__ $$aUNRESTRICTED
000910082 980__ $$aAPC
000910082 981__ $$aI:(DE-Juel1)IET-2-20140314
000910082 981__ $$aI:(DE-Juel1)IMD-2-20101013