Cumulant selective perceptron:

Propagation of statistical information through a trainable non-linearity

Sandra Nestler^{1,2}, Moritz Helias^{1,3}, Matthieu Gilson^{1,4}

¹ Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6)

- ² RWTH Aachen University, Aachen, Germany
- ³ Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
- ⁴ Institut de Neurosciences des Systèmes (INS, UMR1106), INSERM-AMU, Marseille (France)

Setup

- Perceptron: The minimal network to extract information
- Linear operation: Sensitive only to mean of the data
- Covariance perceptron^{1,2}: Sensitive to correlation structure
 - Corresponds to quadratic non-linearity applied to the inputs
- Combine arbitrary polynomials to obtain a cumulant selective perceptron
- Trainable weights indicate importance of corresponding cumulant

Summary

- Non-linear components of the activation function filter for different statistical information in the data
- Perceptron-like model with trainable non-linearity efficiently collects information for classification despite low parameter complexity
- Detection of underlying statistical structure verified using artificial data based on stochastic differential equation
- Combination of statistical orders gives synergy effect on classification performance
- Optimal activation function depends on the cumulants of the data

References

- Gilson et al. (2020). The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks. PLoS computational biology, 16(10), e1008127.
- ² Dahmen et al. (2020). Capacity of the covariance perceptron. Journal of Physics A: Mathematical and Theoretical, 53(35), 354002.

Propagation of cumulants

Initial perceptron layer followed by non-linearities

$$y_m^t = \sum_{m} B_{mn} x_n^t \qquad Y_m^{(i)} = \langle \langle (y_m^t)^i \rangle \rangle_t$$

Combine statistical orders linearly for readout

$$Z_m = \sum_{i} \alpha_i Y_m^{(i)}$$

Train cumulant selective perceptron alongside fully connected model given the same statistical information

$$Y_m^{\mathrm{ML}(i)} = \sum_{n_1...n_i} B_{mn_1...n_i}^{\mathrm{ML}(i)} \langle \langle x_{n_1}^t \cdots x_{n_i}^t \rangle \rangle_t$$

- Joint weights of cumulant selective perceptron force to project only the most significant information to diagonals $Y_m^{(i)}$
- Linear readout parameters α_i represent importance of statistical orders
- lacktriangle Classify by the maximum entry of Z_m

Finding underlying structure in data

- Create a controlled setting with known statistical properties
- Use a stochastic differential equation with carefully chosen Lagrangian

$$\frac{\partial x_i(t)}{\partial t} = -\Gamma \frac{\delta L[x]}{\delta x_i} + \xi_i(t) \quad L[x] = j^T x + \frac{1}{2} x^T J x + \frac{1}{3!} \sum_{ijk} K_{ijk} x_i x_j x_k$$

- Select parameters to obtain distribution with desired cumulants in large-time limit
- Cumulant selective perceptron trains to high accuracy, shows synergy effect of combining individual orders, and detects significant orders successfully
- Performance is comparable to fully connected model at full scale and better when restricted to the same number of trainable parameters
- Applied to benchmark datasets, can extract underlying information about statistics as well as approximately optimal gain function

accuracy order 1

contrast order 2

1.5

contrast order 2

