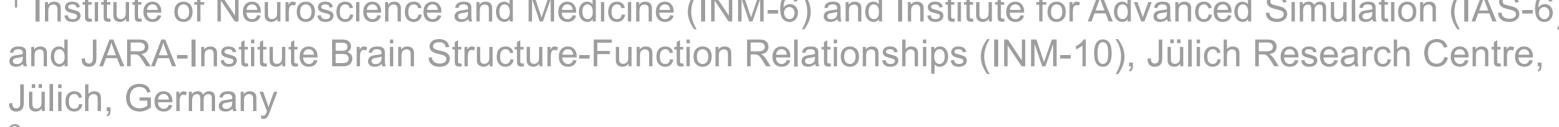
### Cumulant selective perceptron:

# Propagation of statistical information through a trainable non-linearity

## Sandra Nestler<sup>1,2</sup>, Moritz Helias<sup>1,3</sup>, Matthieu Gilson<sup>1,4</sup>

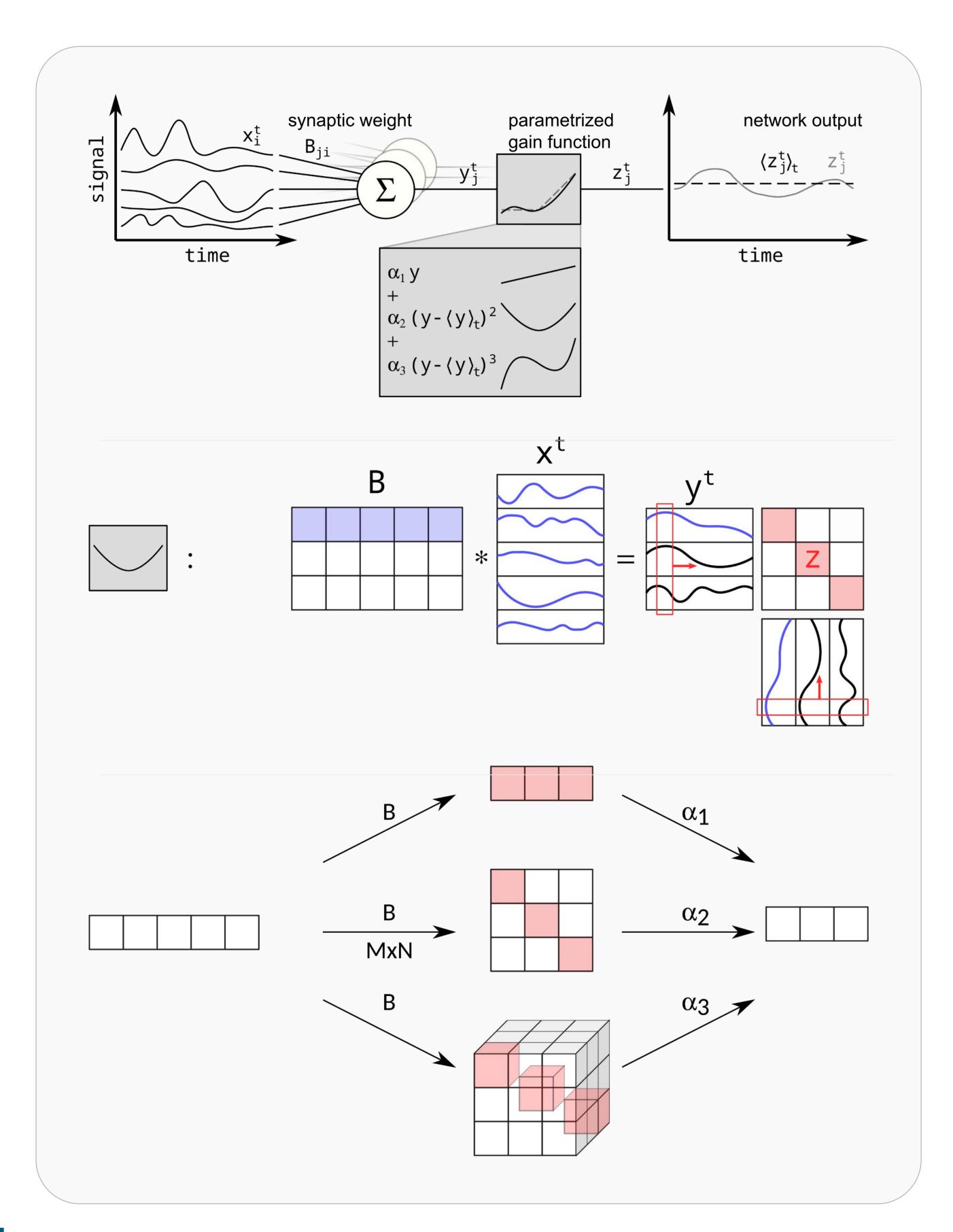
<sup>1</sup> Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6)



- <sup>2</sup> RWTH Aachen University, Aachen, Germany
- <sup>3</sup> Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
- <sup>4</sup> Institut de Neurosciences des Systèmes (INS, UMR1106), INSERM-AMU, Marseille (France)

#### Setup

- Perceptron: The minimal network to extract information
- Linear operation: Sensitive only to mean of the data
- Covariance perceptron<sup>1,2</sup>: Sensitive to correlation structure
  - Corresponds to quadratic non-linearity applied to the inputs
- Combine arbitrary polynomials to obtain a cumulant selective perceptron
- Trainable weights indicate importance of corresponding cumulant



### Summary

- Non-linear components of the activation function filter for different statistical information in the data
- Perceptron-like model with trainable non-linearity efficiently collects information for classification despite low parameter complexity
- Detection of underlying statistical structure verified using artificial data based on stochastic differential equation
- Combination of statistical orders gives synergy effect on classification performance
- Optimal activation function depends on the cumulants of the data

#### References

- Gilson et al. (2020). The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks. PLoS computational biology, 16(10), e1008127.
- <sup>2</sup> Dahmen et al. (2020). Capacity of the covariance perceptron. Journal of Physics A: Mathematical and Theoretical, 53(35), 354002.







#### Propagation of cumulants

Initial perceptron layer followed by non-linearities

$$y_m^t = \sum_{m} B_{mn} x_n^t \qquad Y_m^{(i)} = \langle \langle (y_m^t)^i \rangle \rangle_t$$

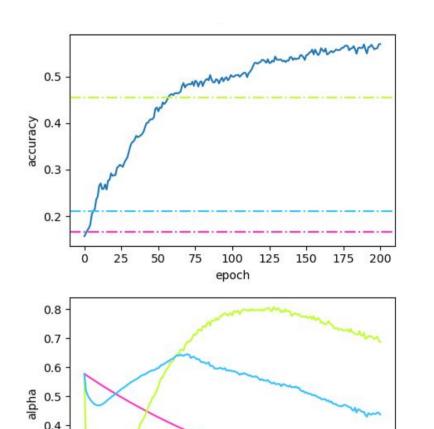
Combine statistical orders linearly for readout

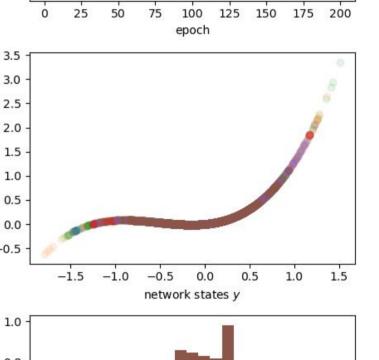
$$Z_m = \sum_{i} \alpha_i Y_m^{(i)}$$

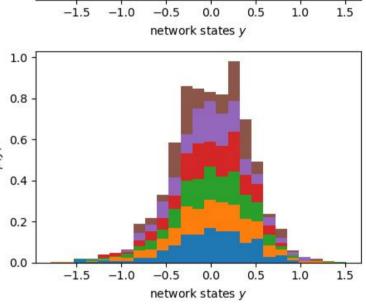
Train cumulant selective perceptron alongside fully connected model given the same statistical information

$$Y_m^{\mathrm{ML}(i)} = \sum_{n_1...n_i} B_{mn_1...n_i}^{\mathrm{ML}(i)} \langle \langle x_{n_1}^t \cdots x_{n_i}^t \rangle \rangle_t$$

- Joint weights of cumulant selective perceptron force to project only the most significant information to diagonals  $Y_m^{(i)}$
- Linear readout parameters  $\alpha_i$  represent importance of statistical orders
- lacktriangle Classify by the maximum entry of  $Z_m$





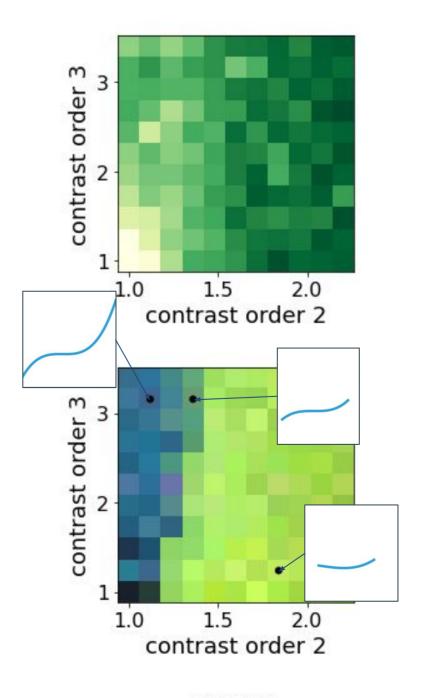


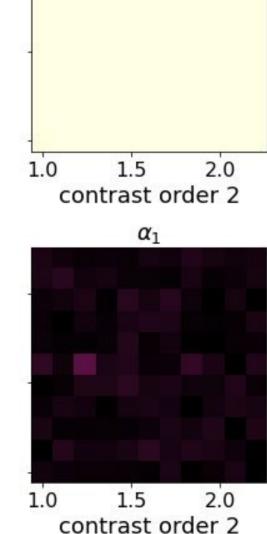
### Finding underlying structure in data

- Create a controlled setting with known statistical properties
- Use a stochastic differential equation with carefully chosen Lagrangian

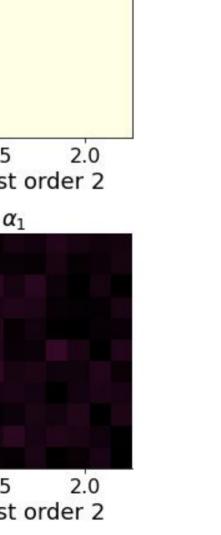
$$\frac{\partial x_i(t)}{\partial t} = -\Gamma \frac{\delta L[x]}{\delta x_i} + \xi_i(t) \quad L[x] = j^T x + \frac{1}{2} x^T J x + \frac{1}{3!} \sum_{ijk} K_{ijk} x_i x_j x_k$$

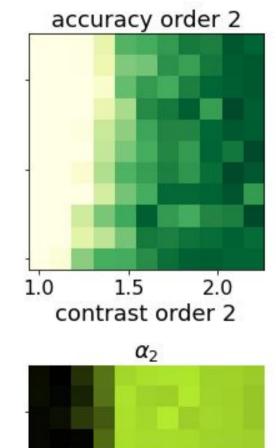
- Select parameters to obtain distribution with desired cumulants in large-time limit
- Cumulant selective perceptron trains to high accuracy, shows synergy effect of combining individual orders, and detects significant orders successfully
- Performance is comparable to fully connected model at full scale and better when restricted to the same number of trainable parameters
- Applied to benchmark datasets, can extract underlying information about statistics as well as approximately optimal gain function



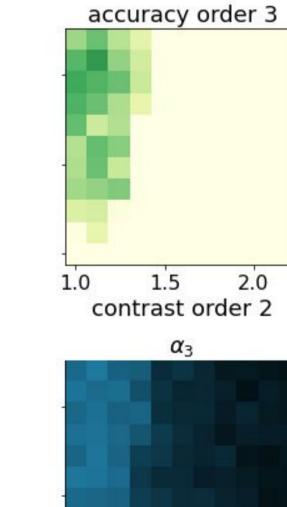


accuracy order 1





contrast order 2



1.5

contrast order 2

