001 | 910085 | ||
005 | 20221027130516.0 | ||
037 | _ | _ | |a FZJ-2022-03604 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Junk, Yannik |0 P:(DE-Juel1)185010 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a IEEE 52nd European Solid State Device Research Conference |g ESSDERC |c Milan |d 2022-09-19 - 2022-09-22 |w Italy |
245 | _ | _ | |a GeSn Vertical Gate-all-around Nanowire n-type MOSFETs |
260 | _ | _ | |c 2022 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1666867787_21995 |2 PUB:(DE-HGF) |x Panel discussion |
520 | _ | _ | |a Vertical GeSn gate-all-around (GAA) nanowire nMOSFETs fabricated using a top-down approach are presented. The devices are benchmarked with similar Ge and Ge/GeSn/Ge heterostructure devices to underline the great potential of GeSn for future nMOS devices. Device measurements are performed in the temperature range from 12 K to room temperature (RT, 300 K). At RT the all-GeSn n-MOSFETs show a subthreshold swing (SS) of ~120 mV/dec that decreases at cryogenic temperatures to a very steep 20mV/dec. The abrupt transition from subthreshold to on-state shows the suitability of GeSn alloys for cryogenic CMOS applications. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
700 | 1 | _ | |a Frauenrath, Marvin |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Han, Yi |0 P:(DE-Juel1)176845 |b 2 |u fzj |
700 | 1 | _ | |a Concepción Díaz, Omar |0 P:(DE-Juel1)188576 |b 3 |u fzj |
700 | 1 | _ | |a Bae, Jin Hee |0 P:(DE-Juel1)177006 |b 4 |u fzj |
700 | 1 | _ | |a Hartmann, Jean-Michel |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 6 |u fzj |
700 | 1 | _ | |a Buca, Dan Mihai |0 P:(DE-Juel1)125569 |b 7 |u fzj |
700 | 1 | _ | |a Zhao, Qing-Tai |0 P:(DE-Juel1)128649 |b 8 |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:910085 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)185010 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)176845 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)188576 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)177006 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)125569 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)128649 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
914 | 1 | _ | |y 2022 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|