001     910105
005     20240708132700.0
024 7 _ |a 10.1016/j.ceramint.2022.07.266
|2 doi
024 7 _ |a 0272-8842
|2 ISSN
024 7 _ |a 0392-2960
|2 ISSN
024 7 _ |a 2128/32031
|2 Handle
024 7 _ |a WOS:000870826900004
|2 WOS
037 _ _ |a FZJ-2022-03613
082 _ _ |a 670
100 1 _ |a Bhandari, Subhadip
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Flash sintering behaviour of 8YSZ-NiO composites
260 _ _ |a Faenza
|c 2022
|b Ceramurgia
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1665984871_4762
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Flash sintering is an electric field/current assisted sintering technique, which is reported to lower the furnace temperature and to reduce sintering time significantly. In this work, we have studied the processing of 8YSZ/NiO composites by flash sintering, for the first time. Two composites, with different amount of NiO (one below the percolation limit and another one above it) were processed in two different sintering atmospheres. Constant heating rate experiments were performed to know the minimum furnace temperature required to flash sinter the samples for a given applied electric field. Subsequently, isothermal flash sintering experiments were performed at different current densities. The flash onset temperature of the composites was lower in the reducing atmosphere compared to in air. The power dissipated in stage III of the flash was strongly influenced by the composite composition and the sintering atmosphere. The extent of densification in the composites was controlled by the current density. The composites were densified up to a relative density of ∼90% in 30 s when flash sintered in air. In reducing atmosphere, there was in-situ reduction of NiO to Ni. As a result, for composites containing NiO above the percolation limit, the current preferentially flew through the in-situ formed metallic phase and there was no densification in the composite in reducing atmosphere. Phase and microstructure evolution in the composites was studied through XRD, SEM and EDS. With proper control of the electrical parameters (electric field and current density), composites with controlled porosity can be processed through flash sintering which may have applications for solid oxide fuel cells.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mishra, Tarini Prasad
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 2
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 3
700 1 _ |a Yadav, Devinder
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.ceramint.2022.07.266
|g Vol. 48, no. 22, p. 33236 - 33244
|0 PERI:(DE-600)245887-1
|n 22
|p 33236 - 33244
|t Ceramics international / Ci news
|v 48
|y 2022
|x 0272-8842
856 4 _ |u https://juser.fz-juelich.de/record/910105/files/Corrected%20Proof%20Bhandari%20et%20al.pdf
|y Published on 2022-08-10. Available in OpenAccess from 2024-08-10.
909 C O |o oai:juser.fz-juelich.de:910105
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CERAM INT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21