000910106 001__ 910106
000910106 005__ 20240725202007.0
000910106 0247_ $$2doi$$a10.1002/adem.202201027
000910106 0247_ $$2ISSN$$a1438-1656
000910106 0247_ $$2ISSN$$a1527-2648
000910106 0247_ $$2Handle$$a2128/33407
000910106 0247_ $$2WOS$$aWOS:000864408400001
000910106 037__ $$aFZJ-2022-03614
000910106 082__ $$a660
000910106 1001_ $$0P:(DE-HGF)0$$aPrasad Mishra, Tarini$$b0
000910106 245__ $$aNdFeB Magnets with Well‐Pronounced Anisotropic Magnetic Properties Made by Electric Current‐Assisted Sintering
000910106 260__ $$aFrankfurt, M.$$bDeutsche Gesellschaft für Materialkunde$$c2023
000910106 3367_ $$2DRIVER$$aarticle
000910106 3367_ $$2DataCite$$aOutput Types/Journal article
000910106 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721884177_2788
000910106 3367_ $$2BibTeX$$aARTICLE
000910106 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910106 3367_ $$00$$2EndNote$$aJournal Article
000910106 520__ $$aElectric current-assisted sintering (ECAS) technologies are highly promising for processing of NdFeB magnets. Due to the combination of direct Joule heating and application of external load, even powders, whose particle size distribution and morphology are not optimum for conventional powder processing like melt-spun powders or magnet scrap, can be easily sintered to high densities. A systematic study is done to demonstrate the potential of field-assisted sintering technique/spark plasma sintering (FAST/SPS) and flash spark plasma sintering (flash SPS) for sintering of NdFeB powders. Melt-spun, commercial NdFeB powder (Magnequench MQU-F) is used as starting material. Its platelet-like shape makes this powder extremely difficult to sinter by conventional methods. This study clearly reveals that especially in the case of flash SPS application of external pressure in combination with short cycle times enables to achieve well-pronounced anisotropic magnetic properties without the need of subsequent upset forging. Optimized flash SPS parameters are applied to NdFeB magnet scrap with broad particle size distribution, demonstrating the general potential of ECAS technologies for recycling of waste magnet materials. Finally, the results are benchmarked with respect to established NdFeB processing technologies and electrodischarge sintering (EDS), another promising ECAS technology with very short cycling time.
000910106 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000910106 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910106 7001_ $$0P:(DE-HGF)0$$aLeich, Lennart$$b1
000910106 7001_ $$0P:(DE-HGF)0$$aKrengel, Martin$$b2
000910106 7001_ $$0P:(DE-HGF)0$$aWeber, Sebastian$$b3
000910106 7001_ $$0P:(DE-HGF)0$$aRöttger, Arne$$b4
000910106 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b5$$eCorresponding author
000910106 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.202201027$$gp. 2201027 -$$n1$$p2201027$$tAdvanced engineering materials$$v25$$x1438-1656$$y2023
000910106 8564_ $$uhttps://juser.fz-juelich.de/record/910106/files/Adv%20Eng%20Mater%20-%202022%20-%20Prasad%20Mishra%20-%20NdFeB%20Magnets%20with%20Well%E2%80%90Pronounced%20Anisotropic%20Magnetic%20Properties%20Made%20by%20Electric.pdf$$yOpenAccess
000910106 8767_ $$d2023-02-23$$eHybrid-OA$$jDEAL
000910106 909CO $$ooai:juser.fz-juelich.de:910106$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC
000910106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b5$$kFZJ
000910106 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000910106 9141_ $$y2023
000910106 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910106 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910106 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910106 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000910106 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000910106 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000910106 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000910106 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910106 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000910106 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
000910106 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
000910106 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
000910106 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
000910106 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-19
000910106 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENG MATER : 2022$$d2023-08-19
000910106 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-19
000910106 920__ $$lyes
000910106 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000910106 980__ $$ajournal
000910106 980__ $$aVDB
000910106 980__ $$aI:(DE-Juel1)IEK-1-20101013
000910106 980__ $$aAPC
000910106 980__ $$aUNRESTRICTED
000910106 9801_ $$aAPC
000910106 9801_ $$aFullTexts
000910106 981__ $$aI:(DE-Juel1)IMD-2-20101013