000910107 001__ 910107
000910107 005__ 20240508104146.0
000910107 0247_ $$2doi$$a10.1016/j.tim.2022.08.001
000910107 0247_ $$2ISSN$$a0966-842X
000910107 0247_ $$2ISSN$$a1878-4380
000910107 0247_ $$2Handle$$a2128/33329
000910107 0247_ $$2pmid$$a36038409
000910107 0247_ $$2WOS$$aWOS:000912531000001
000910107 037__ $$aFZJ-2022-03615
000910107 082__ $$a570
000910107 1001_ $$0P:(DE-Juel1)176835$$aHardy, Aël$$b0
000910107 245__ $$aAntiphage small molecules produced by bacteria – beyond protein-mediated defenses
000910107 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
000910107 3367_ $$2DRIVER$$aarticle
000910107 3367_ $$2DataCite$$aOutput Types/Journal article
000910107 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712665317_18040
000910107 3367_ $$2BibTeX$$aARTICLE
000910107 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910107 3367_ $$00$$2EndNote$$aJournal Article
000910107 500__ $$aBiotechnologie 1
000910107 520__ $$aBacterial populations face the constant threat of viral predation exerted by bacteriophages (‘phages’). In response, bacteria have evolved a wide range of defense mechanisms against phage challenges. Yet the vast majority of antiphage defense systems described until now are mediated by proteins or RNA complexes acting at the single-cell level. Here, we review small molecule-based defense strategies against phage infection, with a focus on the antiphage molecules described recently. Importantly, inhibition of phage infection by excreted small molecules has the potential to protect entire bacterial communities, highlighting the ecological significance of these antiphage strategies. Considering the immense repertoire of bacterial metabolites, we envision that the list of antiphage small molecules will be further expanded in the future.
000910107 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000910107 536__ $$0G:(GEPRIS)464434020$$aDFG project 464434020 - Inhibierung der Phageninfektion durch aktinobakterielle Sekundärmetabolite (464434020)$$c464434020$$x1
000910107 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910107 7001_ $$0P:(DE-Juel1)174336$$aKever, Larissa$$b1
000910107 7001_ $$0P:(DE-Juel1)138503$$aFrunzke, Julia$$b2$$eCorresponding author
000910107 773__ $$0PERI:(DE-600)2010995-7$$a10.1016/j.tim.2022.08.001$$gp. S0966842X2200213X$$n1$$p92-106$$tTrends in microbiology$$v31$$x0966-842X$$y2023
000910107 8564_ $$uhttps://juser.fz-juelich.de/record/910107/files/preprint_Hardy_antiphage%20molecules_Trends.pdf$$yPublished on 2022-12-19. Available in OpenAccess from 2023-12-19.$$zStatID:(DE-HGF)0510
000910107 909CO $$ooai:juser.fz-juelich.de:910107$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176835$$aForschungszentrum Jülich$$b0$$kFZJ
000910107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174336$$aForschungszentrum Jülich$$b1$$kFZJ
000910107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138503$$aForschungszentrum Jülich$$b2$$kFZJ
000910107 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000910107 9141_ $$y2022
000910107 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000910107 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000910107 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910107 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000910107 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
000910107 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRENDS MICROBIOL : 2022$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2023-10-22
000910107 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bTRENDS MICROBIOL : 2022$$d2023-10-22
000910107 920__ $$lyes
000910107 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000910107 980__ $$ajournal
000910107 980__ $$aVDB
000910107 980__ $$aI:(DE-Juel1)IBG-1-20101118
000910107 980__ $$aUNRESTRICTED
000910107 9801_ $$aFullTexts