000910111 001__ 910111
000910111 005__ 20250129094244.0
000910111 0247_ $$2Handle$$a2128/33118
000910111 037__ $$aFZJ-2022-03619
000910111 1001_ $$0P:(DE-Juel1)192138$$aSchmidt, Norberto$$b0$$ufzj
000910111 1112_ $$aJCNS WORKSHOP 2022 TRENDS AND PERSPECTIVES IN NEUTRON SCATTERING: EXPERIMENTS AND DATA ANALYSIS IN THE DIGITAL AGE$$cEvangelische Akademie Tutzing$$d2022-10-11 - 2022-10-14$$wGermany
000910111 245__ $$aNeutron instruments simulations using machine learning techniques with KDSource
000910111 260__ $$c2022
000910111 3367_ $$033$$2EndNote$$aConference Paper
000910111 3367_ $$2DataCite$$aOther
000910111 3367_ $$2BibTeX$$aINPROCEEDINGS
000910111 3367_ $$2DRIVER$$aconferenceObject
000910111 3367_ $$2ORCID$$aLECTURE_SPEECH
000910111 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1671086364_599$$xInvited
000910111 520__ $$aThe design of neutron instruments usually is related to the simulations of neutron beams. These simulations are normally decoupled from the neutron source since the nuclear reactions that govern the generation of neutrons in the source are independent of the specific interactions that take place in the neutron beam path. Also, neutron beams are usually transported far away from the source to reduce the background signal in the measurements and the radiation dose of the personnel. When evaluating the neutron beam under different operating conditions, it is useful to have a source that can be re-sampled. KDSource [1,2] is an open-source code that uses the adaptive multivariate Kernel Density Estimation (KDE) method to estimate the source distribution at a given point in the beam trajectory, which seeks to overcome limitations of other variance-reduction techniques. The approach presents a novel methodology to optimize source modelling, which may be especially suited for neutron beam and radiation shielding simulations. The core idea of the methodology is to use some machine learning libraries and algorithms to optimize the bandwidth selection for each source variable. With this strategy, smooth estimates of the variable distributions may be obtained from particle lists at a given point in a simulation that maintains correlations among all the variables. The code implements the proposed methodology in Python, and it consists of a module for KDE model optimization, and another for sampling (i.e. generating new particles using the previously optimized model). This work aims to present the KDSource code with some usage examples to design the neutron imaging instruments for the HBS project. [1] N.S. Schmidt, O.I. Abbate, Z.M. Prieto, J.I. Robledo, J.I. Márquez Damián, A.A. Márquez, J. Dawidowski, 2022. KDSource, a tool for the generation of Monte Carlo particle sources using kernel density estimation. Ann. Nucl. Energy 177. URL: https://doi.org/10.1016/j.anucene.2022.109309 [2] O.I. Abbate, N.S. Schmidt, Z.M. Prieto, J.I. Robledo, J.I. Márquez Damián, A.A. Márquez, J. Dawidowski, 2021. KDSource, a tool for the generation of Monte Carlo particle sources using kernel density estimation. GitHub repository. URL: https://github.com/KDSource/KDSource
000910111 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000910111 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000910111 7001_ $$0P:(DE-HGF)0$$aAbbate, O. I.$$b1
000910111 7001_ $$0P:(DE-HGF)0$$aPrieto, Z. M.$$b2
000910111 7001_ $$0P:(DE-Juel1)195622$$aRobledo, J. I.$$b3$$ufzj
000910111 7001_ $$0P:(DE-HGF)0$$aMárquez Damián, J. I.$$b4
000910111 7001_ $$0P:(DE-HGF)0$$aMárquez, A. A.$$b5
000910111 7001_ $$0P:(DE-HGF)0$$aDawidowski, J.$$b6
000910111 7001_ $$0P:(DE-Juel1)130382$$aMauerhofer, E.$$b7$$ufzj
000910111 7001_ $$0P:(DE-Juel1)168124$$aGutberlet, T.$$b8$$ufzj
000910111 7001_ $$0P:(DE-Juel1)130572$$aBrückel, T.$$b9$$ufzj
000910111 8564_ $$uhttps://juser.fz-juelich.de/record/910111/files/NS_Presentation-20221011-JCNS.pdf$$yOpenAccess
000910111 909CO $$ooai:juser.fz-juelich.de:910111$$pdriver$$pVDB$$popen_access$$popenaire
000910111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192138$$aForschungszentrum Jülich$$b0$$kFZJ
000910111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195622$$aForschungszentrum Jülich$$b3$$kFZJ
000910111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130382$$aForschungszentrum Jülich$$b7$$kFZJ
000910111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168124$$aForschungszentrum Jülich$$b8$$kFZJ
000910111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b9$$kFZJ
000910111 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000910111 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000910111 9141_ $$y2022
000910111 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910111 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000910111 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x1
000910111 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x2
000910111 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000910111 9801_ $$aFullTexts
000910111 980__ $$aconf
000910111 980__ $$aVDB
000910111 980__ $$aUNRESTRICTED
000910111 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000910111 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
000910111 980__ $$aI:(DE-Juel1)PGI-4-20110106
000910111 980__ $$aI:(DE-82)080009_20140620
000910111 981__ $$aI:(DE-Juel1)JCNS-2-20110106