001     910144
005     20240711085627.0
024 7 _ |a 10.1016/j.jeurceramsoc.2022.09.033
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a 2128/32069
|2 Handle
024 7 _ |a WOS:000877589400004
|2 WOS
037 _ _ |a FZJ-2022-03633
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Deibert, W.
|0 P:(DE-Juel1)144923
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Up-scaling and processing related characterisation of hydrogen permeation membranes based on pristine and Mo substituted La28−xW4+xO54+1.5x
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669908587_25750
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mixed protonic and electronic conducting ceramic membranes offer a high potential to separate pure hydrogen from gas mixtures or in the field of membrane reactors. The water-gas-shift reaction is an example for the possible application of lanthanum tungstate based materials with general formula La28−xW4+xO54+1.5x (LaWO) due to their high stability under the reaction conditions. To bring ceramic membranes one step closer to commercialisation, high effort is needed to find optimised material compositions and transfer them into suitable fabrication techniques. Both is done in the present work. First, a detailed XRD-study, supported by microstructural analysis, was performed to find a suitable composition for Mo-substituted LaWO. As it was demonstrated, with increasing the Mo concentration as a substitute for W leading to enhanced electronic conductivity, the single phase region narrows and La/W ratio shifts to the higher values. In order to ensure single phase composition of the powder used in the membrane fabrication, 20 mol.% Mo substituted LWO was the material of choice. Subsequently tape-casting was performed to produce asymmetric membranes consisting of a thin functional membrane made of LaWO-Mo20 and a porous support layer of pure LaWO. Such asymmetric component could be scaled-up to 100 cm² active membrane area. The sintering behaviour was characterised by optical dilatometry. The more cost-efficient support material MgO was shown to be incompatible with the LaWO-Mo20 material. Therefore, an advanced fabrication route was developed by introducing an intermediate layer to overcome interdiffusion and secondary phase formation.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ivanova, M. E.
|0 P:(DE-Juel1)129617
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Ran, K.
|0 P:(DE-Juel1)174238
|b 2
|u fzj
700 1 _ |a Mayer, J.
|0 P:(DE-Juel1)180571
|b 3
|u fzj
700 1 _ |a Meulenberg, W. A.
|0 P:(DE-Juel1)129637
|b 4
|u fzj
773 _ _ |a 10.1016/j.jeurceramsoc.2022.09.033
|g p. S0955221922007270
|0 PERI:(DE-600)2013983-4
|n 1
|p 121-129
|t Journal of the European Ceramic Society
|v 43
|y 2023
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/910144/files/1-s2.0-S0955221922007270-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/910144/files/Up-scaling%20and%20processing%20related%20characterisation_final.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910144
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174238
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180571
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129637
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J EUR CERAM SOC : 2022
|d 2023-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21